These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12085963)

  • 1. Contribution of the androgen receptor to prostate cancer predisposition and progression.
    Buchanan G; Irvine RA; Coetzee GA; Tilley WD
    Cancer Metastasis Rev; 2001; 20(3-4):207-23. PubMed ID: 12085963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The androgen receptor gene and its influence on the development and progression of prostate cancer.
    Montgomery JS; Price DK; Figg WD
    J Pathol; 2001 Sep; 195(2):138-46. PubMed ID: 11592091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collocation of androgen receptor gene mutations in prostate cancer.
    Buchanan G; Greenberg NM; Scher HI; Harris JM; Marshall VR; Tilley WD
    Clin Cancer Res; 2001 May; 7(5):1273-81. PubMed ID: 11350894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer.
    Chatterjee B
    Mol Cell Biochem; 2003 Nov; 253(1-2):89-101. PubMed ID: 14619959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and somatic mutation on androgen receptor gene in prostate cancer.
    Segawa N; Nakamura M; Shan L; Utsunomiya H; Nakamura Y; Mori I; Katsuoka Y; Kakudo K
    Int J Urol; 2002 Oct; 9(10):545-53. PubMed ID: 12445232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique bisphenol A transcriptome in prostate cancer: novel effects on ERbeta expression that correspond to androgen receptor mutation status.
    Hess-Wilson JK; Webb SL; Daly HK; Leung YK; Boldison J; Comstock CE; Sartor MA; Ho SM; Knudsen KE
    Environ Health Perspect; 2007 Nov; 115(11):1646-53. PubMed ID: 18007998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The mechanisms of prostate cancer progression through androgen receptor].
    Goto Y; Sakamoto S; Ichikawa T
    Nihon Rinsho; 2016 Jan; 74(1):55-9. PubMed ID: 26793880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen receptor signaling and mutations in prostate cancer.
    Koochekpour S
    Asian J Androl; 2010 Sep; 12(5):639-57. PubMed ID: 20711217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor signaling in androgen-refractory prostate cancer.
    Grossmann ME; Huang H; Tindall DJ
    J Natl Cancer Inst; 2001 Nov; 93(22):1687-97. PubMed ID: 11717329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells.
    Cao X; Qin J; Xie Y; Khan O; Dowd F; Scofield M; Lin MF; Tu Y
    Oncogene; 2006 Jun; 25(26):3719-34. PubMed ID: 16449965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence.
    Coutinho I; Day TK; Tilley WD; Selth LA
    Endocr Relat Cancer; 2016 Dec; 23(12):T179-T197. PubMed ID: 27799360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer.
    Chmelar R; Buchanan G; Need EF; Tilley W; Greenberg NM
    Int J Cancer; 2007 Feb; 120(4):719-33. PubMed ID: 17163421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity.
    Lyons LS; Burnstein KL
    Mol Endocrinol; 2006 May; 20(5):1061-72. PubMed ID: 16384856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen receptor signaling in prostate cancer.
    Culig Z; Santer FR
    Cancer Metastasis Rev; 2014 Sep; 33(2-3):413-27. PubMed ID: 24384911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice.
    Albertelli MA; O'Mahony OA; Brogley M; Tosoian J; Steinkamp M; Daignault S; Wojno K; Robins DM
    Hum Mol Genet; 2008 Jan; 17(1):98-110. PubMed ID: 17906287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene stimulates androgen independence in prostate cancer cells through combinatorial activation of mutant androgen receptor and mitogen-activated protein kinase pathways.
    Shah S; Hess-Wilson JK; Webb S; Daly H; Godoy-Tundidor S; Kim J; Boldison J; Daaka Y; Knudsen KE
    Mol Cancer Res; 2008 Sep; 6(9):1507-20. PubMed ID: 18819937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minireview: Alternative activation pathways for the androgen receptor in prostate cancer.
    Lamont KR; Tindall DJ
    Mol Endocrinol; 2011 Jun; 25(6):897-907. PubMed ID: 21436259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen receptor as a target in androgen-independent prostate cancer.
    Balk SP
    Urology; 2002 Sep; 60(3 Suppl 1):132-8; discussion 138-9. PubMed ID: 12231070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer.
    Fernandes RC; Hickey TE; Tilley WD; Selth LA
    Endocr Relat Cancer; 2019 May; 26(5):R237-R257. PubMed ID: 30817318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer.
    Dulinska-Litewka J; McCubrey JA; Laidler P
    Curr Med Chem; 2013; 20(1):144-57. PubMed ID: 23033951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.