These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12086524)

  • 1. Basic charge clusters and predictions of membrane protein topology.
    Juretić D; Zoranić L; Zucić D
    J Chem Inf Comput Sci; 2002; 42(3):620-32. PubMed ID: 12086524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational preference functions for predicting helices in membrane proteins.
    Juretić D; Lee B; Trinajstić N; Williams RW
    Biopolymers; 1993 Feb; 33(2):255-73. PubMed ID: 8485300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charged residues next to transmembrane regions revisited: "Positive-inside rule" is complemented by the "negative inside depletion/outside enrichment rule".
    Baker JA; Wong WC; Eisenhaber B; Warwicker J; Eisenhaber F
    BMC Biol; 2017 Jul; 15(1):66. PubMed ID: 28738801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preference functions for prediction of membrane-buried helices in integral membrane proteins.
    Juretić D; Zucić D; Lucić B; Trinajstić N
    Comput Chem; 1998 Jun; 22(4):279-94. PubMed ID: 9680689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining neural network predictions for helical transmembrane proteins by dynamic programming.
    Rost B; Casadio R; Fariselli P
    Proc Int Conf Intell Syst Mol Biol; 1996; 4():192-200. PubMed ID: 8877519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
    Zhou H; Zhou Y
    Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology of membrane proteins-predictions, limitations and variations.
    Tsirigos KD; Govindarajan S; Bassot C; Västermark Å; Lamb J; Shu N; Elofsson A
    Curr Opin Struct Biol; 2018 Jun; 50():9-17. PubMed ID: 29100082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the topology of eukaryotic membrane proteins.
    Sipos L; von Heijne G
    Eur J Biochem; 1993 May; 213(3):1333-40. PubMed ID: 8099327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function.
    Pathania A; Gupta AK; Dubey S; Gopal B; Sardesai AA
    J Bacteriol; 2016 Dec; 198(23):3186-3199. PubMed ID: 27645388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible topology of a bifunctional transmembrane protein depends upon the charge balance around its transmembrane domain.
    Kim H; Paul S; Gennity J; Jennity J [corrected to Gennity J]; Inouye M
    Mol Microbiol; 1994 Mar; 11(5):819-31. PubMed ID: 8022260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
    Viklund H; Elofsson A
    Bioinformatics; 2008 Aug; 24(15):1662-8. PubMed ID: 18474507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.
    Elazar A; Weinstein JJ; Prilusky J; Fleishman SJ
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10340-5. PubMed ID: 27562165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli.
    Haardt M; Bremer E
    J Bacteriol; 1996 Sep; 178(18):5370-81. PubMed ID: 8808924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The secretory carrier membrane protein family: structure and membrane topology.
    Hubbard C; Singleton D; Rauch M; Jayasinghe S; Cafiso D; Castle D
    Mol Biol Cell; 2000 Sep; 11(9):2933-47. PubMed ID: 10982391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence similarity as a predictor of the transmembrane topology of membrane-intrinsic subunits of bacterial respiratory chain enzymes.
    Rothery RA; Kalra N; Turner RJ; Weiner JH
    J Mol Microbiol Biotechnol; 2002 Mar; 4(2):133-50. PubMed ID: 11873909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains.
    Ballesteros JA; Weinstein H
    Biophys J; 1992 Apr; 62(1):107-9. PubMed ID: 1600090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa.
    Gotoh N; Kusumi T; Tsujimoto H; Wada T; Nishino T
    FEBS Lett; 1999 Sep; 458(1):32-6. PubMed ID: 10518928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
    Kahsay RY; Gao G; Liao L
    Bioinformatics; 2005 May; 21(9):1853-8. PubMed ID: 15691854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.