These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12086524)

  • 21. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule.
    von Heijne G
    J Mol Biol; 1992 May; 225(2):487-94. PubMed ID: 1593632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid distributions in integral membrane protein structures.
    Ulmschneider MB; Sansom MS
    Biochim Biophys Acta; 2001 May; 1512(1):1-14. PubMed ID: 11334619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization.
    Lew S; Ren J; London E
    Biochemistry; 2000 Aug; 39(32):9632-40. PubMed ID: 10933779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Positive charge loading at protein termini is due to membrane protein topology, not a translational ramp.
    Charneski CA; Hurst LD
    Mol Biol Evol; 2014 Jan; 31(1):70-84. PubMed ID: 24077849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The human transmembrane proteome.
    Dobson L; Reményi I; Tusnády GE
    Biol Direct; 2015 May; 10():31. PubMed ID: 26018427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers.
    Steindorf D; Schneider D
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):245-256. PubMed ID: 27915045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HTP: a neural network-based method for predicting the topology of helical transmembrane domains in proteins.
    Fariselli P; Casadio R
    Comput Appl Biosci; 1996 Feb; 12(1):41-8. PubMed ID: 8670618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes.
    Nilsson J; Persson B; von Heijne G
    Proteins; 2005 Sep; 60(4):606-16. PubMed ID: 16028222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fast method for the quantitative estimation of the distribution of hydrophobic and hydrophilic segments in alpha-helices of membrane proteins.
    Luzhkov VB; Surkov NF
    Membr Cell Biol; 2000; 14(1):89-96. PubMed ID: 11051085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A conformational preference parameter to predict helices in integral membrane proteins.
    Mohana Rao JK; Argos P
    Biochim Biophys Acta; 1986 Jan; 869(2):197-214. PubMed ID: 2935194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ExTopoDB: a database of experimentally derived topological models of transmembrane proteins.
    Tsaousis GN; Tsirigos KD; Andrianou XD; Liakopoulos TD; Bagos PG; Hamodrakas SJ
    Bioinformatics; 2010 Oct; 26(19):2490-2. PubMed ID: 20601677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional significance of the BBXXB motif reversed present in the cytoplasmic domains of the human follicle-stimulating hormone receptor.
    Timossi C; Ortiz-Elizondo C; Pineda DB; Dias JA; Conn PM; Ulloa-Aguirre A
    Mol Cell Endocrinol; 2004 Aug; 223(1-2):17-26. PubMed ID: 15279907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices.
    Fleishman SJ; Ben-Tal N
    J Mol Biol; 2002 Aug; 321(2):363-78. PubMed ID: 12144792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proline kinks in transmembrane alpha-helices.
    von Heijne G
    J Mol Biol; 1991 Apr; 218(3):499-503. PubMed ID: 2016741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of transmembrane helix orientation in polytopic membrane proteins.
    Adamian L; Liang J
    BMC Struct Biol; 2006 Jun; 6():13. PubMed ID: 16792816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence motifs, polar interactions and conformational changes in helical membrane proteins.
    Curran AR; Engelman DM
    Curr Opin Struct Biol; 2003 Aug; 13(4):412-7. PubMed ID: 12948770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.