These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12086675)
1. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Mohr S; Stryker JM; Lambowitz AM Cell; 2002 Jun; 109(6):769-79. PubMed ID: 12086675 [TBL] [Abstract][Full Text] [Related]
2. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF. Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940 [TBL] [Abstract][Full Text] [Related]
4. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
5. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related]
6. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621 [TBL] [Abstract][Full Text] [Related]
7. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Kittle JD; Mohr G; Gianelos JA; Wang H; Lambowitz AM Genes Dev; 1991 Jun; 5(6):1009-21. PubMed ID: 1828448 [TBL] [Abstract][Full Text] [Related]
8. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Jarmoskaite I; Bhaskaran H; Seifert S; Russell R Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474 [TBL] [Abstract][Full Text] [Related]
9. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. Jarmoskaite I; Tijerina P; Russell R J Biol Chem; 2021; 296():100132. PubMed ID: 33262215 [TBL] [Abstract][Full Text] [Related]
10. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. Lamech LT; Mallam AL; Lambowitz AM PLoS Biol; 2014 Dec; 12(12):e1002028. PubMed ID: 25536042 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing. A new method for purifying the protein and characterization of physical and enzymatic properties pertinent to splicing. Saldanha RJ; Patel SS; Surendran R; Lee JC; Lambowitz AM Biochemistry; 1995 Jan; 34(4):1275-87. PubMed ID: 7530051 [TBL] [Abstract][Full Text] [Related]
12. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. Caprara MG; Myers CA; Lambowitz AM J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760 [TBL] [Abstract][Full Text] [Related]
13. The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Mohr G; Zhang A; Gianelos JA; Belfort M; Lambowitz AM Cell; 1992 May; 69(3):483-94. PubMed ID: 1533818 [TBL] [Abstract][Full Text] [Related]
14. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782 [TBL] [Abstract][Full Text] [Related]
15. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics. Chadee AB; Bhaskaran H; Russell R J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030 [TBL] [Abstract][Full Text] [Related]
16. Identification and evolution of fungal mitochondrial tyrosyl-tRNA synthetases with group I intron splicing activity. Paukstelis PJ; Lambowitz AM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6010-5. PubMed ID: 18413600 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. Saldanha R; Ellington A; Lambowitz AM J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500 [TBL] [Abstract][Full Text] [Related]
18. Involvement of tyrosyl-tRNA synthetase in splicing of group I introns in Neurospora crassa mitochondria: biochemical and immunochemical analyses of splicing activity. Majumder AL; Akins RA; Wilkinson JG; Kelley RL; Snook AJ; Lambowitz AM Mol Cell Biol; 1989 May; 9(5):2089-104. PubMed ID: 2526294 [TBL] [Abstract][Full Text] [Related]
19. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr G; Caprara MG; Guo Q; Lambowitz AM Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484 [TBL] [Abstract][Full Text] [Related]
20. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. Chen X; Mohr G; Lambowitz AM RNA; 2004 Apr; 10(4):634-44. PubMed ID: 15037773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]