These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12086679)

  • 41. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite.
    Grune T; Klotz LO; Gieche J; Rudeck M; Sies H
    Free Radic Biol Med; 2001 Jun; 30(11):1243-53. PubMed ID: 11368922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A proteolytic system that compensates for loss of proteasome function.
    Glas R; Bogyo M; McMaster JS; Gaczynska M; Ploegh HL
    Nature; 1998 Apr; 392(6676):618-22. PubMed ID: 9560160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein oxidation and the degradation of oxidized proteins in the rat oligodendrocyte cell line OLN 93-antioxidative effect of the intracellular spin trapping agent PBN.
    Ernst A; Stolzing A; Sandig G; Grune T
    Brain Res Mol Brain Res; 2004 Mar; 122(2):126-32. PubMed ID: 15010205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain.
    Keller JN; Dimayuga E; Chen Q; Thorpe J; Gee J; Ding Q
    Int J Biochem Cell Biol; 2004 Dec; 36(12):2376-91. PubMed ID: 15325579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The proteasome: a macromolecular assembly designed for controlled proteolysis.
    Zwickl P; Voges D; Baumeister W
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1501-11. PubMed ID: 10582236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ubiquitin-independent proteolytic functions of the proteasome.
    Orlowski M; Wilk S
    Arch Biochem Biophys; 2003 Jul; 415(1):1-5. PubMed ID: 12801506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Possible involvement of proteasome inhibition in aging: implications for oxidative stress.
    Keller JN; Hanni KB; Markesbery WR
    Mech Ageing Dev; 2000 Jan; 113(1):61-70. PubMed ID: 10708250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteolysis, the ubiquitin-proteasome system, and renal diseases.
    Debigaré R; Price SR
    Am J Physiol Renal Physiol; 2003 Jul; 285(1):F1-8. PubMed ID: 12788783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation.
    Gieche J; Mehlhase J; Licht A; Zacke T; Sitte N; Grune T
    Biochim Biophys Acta; 2001 Apr; 1538(2-3):321-8. PubMed ID: 11336803
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dityrosine: a marker for oxidatively modified proteins and selective proteolysis.
    Giulivi C; Davies KJ
    Methods Enzymol; 1994; 233():363-71. PubMed ID: 8015471
    [No Abstract]   [Full Text] [Related]  

  • 51. The relentless effects of the aging process on protein turnover.
    Ward WF
    Biogerontology; 2000; 1(3):195-9. PubMed ID: 11707896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome.
    Giulivi C; Pacifici RE; Davies KJ
    Arch Biochem Biophys; 1994 Jun; 311(2):329-41. PubMed ID: 8203895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of proteasome-mediated protein degradation during oxidative stress and aging.
    Breusing N; Grune T
    Biol Chem; 2008 Mar; 389(3):203-9. PubMed ID: 18208355
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins.
    Iwai K; Drake SK; Wehr NB; Weissman AM; LaVaute T; Minato N; Klausner RD; Levine RL; Rouault TA
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):4924-8. PubMed ID: 9560204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of the proteasome in various degradative processes in mammalian cells.
    Matthews W; Driscoll J; Tanaka K; Ichihara A; Goldberg AL
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2597-601. PubMed ID: 2539595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 20S proteasome mediated degradation of DHFR: implications in neurodegenerative disorders.
    Amici M; Sagratini D; Pettinari A; Pucciarelli S; Angeletti M; Eleuteri AM
    Arch Biochem Biophys; 2004 Feb; 422(2):168-74. PubMed ID: 14759604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of oxidant systems on the ubiquitylation of proteins in the central nervous system.
    Adamo AM; Pasquini LA; Moreno MB; Oteiza PI; Soto EF; Pasquini JM
    J Neurosci Res; 1999 Feb; 55(4):523-31. PubMed ID: 10723062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteasome-dependent turnover of protein disulfide isomerase in oxidatively stressed cells.
    Grune T; Reinheckel T; Li R; North JA; Davies KJ
    Arch Biochem Biophys; 2002 Jan; 397(2):407-13. PubMed ID: 11795901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome.
    Wilkinson KD
    Semin Cell Dev Biol; 2000 Jun; 11(3):141-8. PubMed ID: 10906270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decreased levels of proteasome activity and proteasome expression in aging spinal cord.
    Keller JN; Huang FF; Markesbery WR
    Neuroscience; 2000; 98(1):149-56. PubMed ID: 10858621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.