BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12087425)

  • 1. Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters.
    Bakermans C; Madsen EL
    Microb Ecol; 2002 Aug; 44(2):95-106. PubMed ID: 12087425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A culture-independent approach for studying microbial diversity in aerobic granules.
    Yi S; Tay JH; Maszenan AM; Tay ST
    Water Sci Technol; 2003; 47(1):283-90. PubMed ID: 12578207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments.
    Hayes LA; Lovley DR
    Microb Ecol; 2002 Jan; 43(1):134-45. PubMed ID: 11984635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms.
    Alfreider A; Vogt C; Hoffmann D; Babel W
    Microb Ecol; 2003 May; 45(4):317-28. PubMed ID: 12704564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [16S rDNA-RFLP analysis of structure and diversity of an aerobic microbial community degrading hexachlorobenzene].
    Liu T; Chen ZL; Cao L; Sun WM; Shen YF
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):758-62. PubMed ID: 17172024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic.
    Flocco CG; Gomes NC; Mac Cormack W; Smalla K
    Environ Microbiol; 2009 Mar; 11(3):700-14. PubMed ID: 19278452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.
    Brightwell G; Boerema J; Mills J; Mowat E; Pulford D
    Int J Food Microbiol; 2006 May; 109(1-2):47-53. PubMed ID: 16488497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of methanotroph communities in a basalt aquifer.
    Newby DT; Reed DW; Petzke LM; Igoe AL; Delwiche ME; Roberto FF; McKinley JP; Whiticar MJ; Colwell FS
    FEMS Microbiol Ecol; 2004 Jun; 48(3):333-44. PubMed ID: 19712303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer.
    Haack SK; Fogarty LR; West TG; Alm EW; McGuire JT; Long DT; Hyndman DW; Forney LJ
    Environ Microbiol; 2004 May; 6(5):438-48. PubMed ID: 15049917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prokaryotic microbial diversity of the ancient salt deposits in the Kunming Salt Mine, P.R. China].
    Xiao W; Peng Q; Liu HW; Wen ML; Cui XL; Yang YL; Duan DC; Chen W; Deng L; Li QY; Chen YG; Wang ZG; Ren Z; Liu JH
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):295-300. PubMed ID: 17552238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities.
    Bakermans C; Hohnstock-Ashe AM; Padmanabhan S; Padmanabhan P; Madsen EL
    Microb Ecol; 2002 Aug; 44(2):107-17. PubMed ID: 12087424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of legacy nuclear waste on the compositional diversity and distributions of sulfate-reducing bacteria in a terrestrial subsurface aquifer.
    Bagwell CE; Liu X; Wu L; Zhou J
    FEMS Microbiol Ecol; 2006 Mar; 55(3):424-31. PubMed ID: 16466381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand.
    Kanokratana P; Chanapan S; Pootanakit K; Eurwilaichitr L
    J Basic Microbiol; 2004; 44(6):430-44. PubMed ID: 15558824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial community structure and trichloroethylene degradation in groundwater.
    Humphries JA; Ashe AM; Smiley JA; Johnston CG
    Can J Microbiol; 2005 Jun; 51(6):433-9. PubMed ID: 16121220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes.
    Cavalca L; Dell'Amico E; Andreoni V
    Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef.
    Bourne DG; Munn CB
    Environ Microbiol; 2005 Aug; 7(8):1162-74. PubMed ID: 16011753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon.
    Egli K; Bosshard F; Werlen C; Lais P; Siegrist H; Zehnder AJ; Van der Meer JR
    Microb Ecol; 2003 May; 45(4):419-32. PubMed ID: 12704553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community.
    Yagi JM; Neuhauser EF; Ripp JA; Mauro DM; Madsen EL
    ISME J; 2010 Jan; 4(1):131-43. PubMed ID: 19776766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater.
    Wilson MS; Bakermans C; Madsen EL
    Appl Environ Microbiol; 1999 Jan; 65(1):80-7. PubMed ID: 9872763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.