These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12089048)

  • 1. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions.
    Yarwood RR; Rockhold ML; Niemet MR; Selker JS; Bottomley PJ
    Appl Environ Microbiol; 2002 Jul; 68(7):3597-605. PubMed ID: 12089048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media.
    Uesugi SL; Yarwood RR; Selker JS; Bottomley PJ
    J Microbiol Methods; 2001 Dec; 47(3):315-22. PubMed ID: 11714522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.
    Heitzer A; Malachowsky K; Thonnard JE; Bienkowski PR; White DC; Sayler GS
    Appl Environ Microbiol; 1994 May; 60(5):1487-94. PubMed ID: 8017932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353.
    Dorn JG; Frye RJ; Maier RM
    Appl Environ Microbiol; 2003 Apr; 69(4):2209-16. PubMed ID: 12676702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and response of a Pseudomonas fuorescens HK44 biosensor.
    Webb OF; Bienkowski PR; Matrubutham U; Evans FA; Heitzer A; Sayler GS
    Biotechnol Bioeng; 1997 Jun; 54(5):491-502. PubMed ID: 18634140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media.
    Thullner M; Mauclaire L; Schroth MH; Kinzelbach W; Zeyer J
    J Contam Hydrol; 2002 Oct; 58(3-4):169-89. PubMed ID: 12400831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing expression of luxCDABE and nah genes in Pseudomonas putida RB1353(NAH7, pUTK9) in dynamic systems.
    Neilson JW; Pierce SA; Maier RM
    Appl Environ Microbiol; 1999 Aug; 65(8):3473-82. PubMed ID: 10427037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying bacterial concentration in water and sand media during flow-through experiments using a non-invasive, real-time, and efficient method.
    Zhang X; Chen F; Yang L; Qin F; Zhuang J
    Front Microbiol; 2022; 13():1016489. PubMed ID: 36620047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium.
    Heitzer A; Webb OF; Thonnard JE; Sayler GS
    Appl Environ Microbiol; 1992 Jun; 58(6):1839-46. PubMed ID: 16348717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation during contaminant transport in porous media: 4. Impact of microbial lag and bacterial cell growth.
    Sandrin SK; Jordan FL; Maier RM; Brusseau ML
    J Contam Hydrol; 2001 Aug; 50(3-4):225-42. PubMed ID: 11523326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of bacterial bioluminescence.
    Kelly CJ; Hsiung CJ; Lajoie CA
    Biotechnol Bioeng; 2003 Feb; 81(3):370-8. PubMed ID: 12474260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial interactions and transport in unsaturated porous media.
    Chen G
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):265-71. PubMed ID: 18930382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release.
    Ripp S; Nivens DE; Werner C; Sayler GS
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):736-41. PubMed ID: 10919336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of system complexity on bacterial transport in saturated porous media.
    Jordan FL; Sandrin SK; Frye RJ; Brusseau ML; Maier RM
    J Contam Hydrol; 2004 Oct; 74(1-4):19-38. PubMed ID: 15358485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation during contaminant transport in porous media: V. The influence of growth and cell elution on microbial distribution.
    Yolcubal I; Pierce SA; Maier RM; Brusseau ML
    J Environ Qual; 2002; 31(6):1824-30. PubMed ID: 12469831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of bioluminescent derivatives of assimilable organic carbon test bacteria.
    Haddix PL; Shaw NJ; LeChevallier MW
    Appl Environ Microbiol; 2004 Feb; 70(2):850-4. PubMed ID: 14766564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.