BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12089795)

  • 1. [Mechanical studies of lumbar interbody fusion implants].
    Bader RJ; Steinhauser E; Rechl H; Mittelmeier W; Bertagnoli R; Gradinger R
    Orthopade; 2002 May; 31(5):459-65. PubMed ID: 12089795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanical study of spinal interbody implants--characteristics and limits of standardized testing].
    Steinhauser E; Bader R; Rechl H; Bertagnoli R; Mittelmeier W; Gradinger R
    Biomed Tech (Berl); 2001 Nov; 46(11):325-32. PubMed ID: 11778317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing.
    Brantigan JW; Steffee AD; Geiger JM
    Spine (Phila Pa 1976); 1991 Jun; 16(6 Suppl):S277-82. PubMed ID: 1862425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro biomechanical investigation: variable positioning of leopard carbon fiber interbody cages.
    Quigley KJ; Alander DH; Bledsoe JG
    J Spinal Disord Tech; 2008 Aug; 21(6):442-7. PubMed ID: 18679101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density.
    Jost B; Cripton PA; Lund T; Oxland TR; Lippuner K; Jaeger P; Nolte LP
    Eur Spine J; 1998; 7(2):132-41. PubMed ID: 9629937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fusion implants of carbon fiber reinforced plastic].
    Früh HJ; Liebetrau A; Bertagnoli R
    Orthopade; 2002 May; 31(5):454-8. PubMed ID: 12089794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of a novel lumbosacral axial fixation device.
    Ledet EH; Tymeson MP; Salerno S; Carl AL; Cragg A
    J Biomech Eng; 2005 Nov; 127(6):929-33. PubMed ID: 16438229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of cervical spine interbody fusion cages.
    Kandziora F; Pflugmacher R; Schäfer J; Born C; Duda G; Haas NP; Mittlmeier T
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1850-7. PubMed ID: 11568693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.
    Lam FC; Alkalay R; Groff MW
    J Spinal Disord Tech; 2012 Apr; 25(2):116-22. PubMed ID: 21430566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strains in trussed spine interbody fusion implants are modulated by load and design.
    Caffrey JP; Alonso E; Masuda K; Hunt JP; Carmody CN; Ganey TM; Sah RL
    J Mech Behav Biomed Mater; 2018 Apr; 80():203-208. PubMed ID: 29433006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load sharing and kinematics of threaded cages for lumbar interbody fusion.
    Lavoie S; Lindsey RW; Gugala Z; Kirking B; Hipp JA
    Clin Orthop Relat Res; 2003 Mar; (408):174-9. PubMed ID: 12616056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study.
    Du L; Sun XJ; Zhou TJ; Li YC; Chen C; Zhao CQ; Zhang K; Zhao J
    BMC Musculoskelet Disord; 2017 Nov; 18(1):474. PubMed ID: 29162074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carbon fiber reinforced polymer cage for vertebral body replacement: technical note.
    Ciappetta P; Boriani S; Fava GP
    Neurosurgery; 1997 Nov; 41(5):1203-6. PubMed ID: 9361079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages.
    Krammer M; Dietl R; Lumenta CB; Kettler A; Wilke HJ; Büttner A; Claes L
    Acta Neurochir (Wien); 2001 Dec; 143(12):1217-22. PubMed ID: 11810385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
    Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA
    Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanical study of potential ceramic implant materials for minimal invasive anterior lumbar interbody fusion].
    Placzek R; Kothe R; Knopf U; Morlock M; Rüther W; Schneider E
    Biomed Tech (Berl); 1999; 44(7-8):206-11. PubMed ID: 10472728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of threaded cages in posterior lumbar interbody fusion.
    Pitzen T; Geisler FH; Matthis D; Müller-Storz H; Steudel WI
    Eur Spine J; 2000 Dec; 9(6):571-6. PubMed ID: 11189929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength and stability of posterior lumbar interbody fusion. Comparison of titanium fiber mesh implant and tricortical bone graft.
    Hoshijima K; Nightingale RW; Yu JR; Richardson WJ; Harper KD; Yamamoto H; Myers BS
    Spine (Phila Pa 1976); 1997 Jun; 22(11):1181-8. PubMed ID: 9201853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.