BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12089795)

  • 21. Strength and stability of posterior lumbar interbody fusion. Comparison of titanium fiber mesh implant and tricortical bone graft.
    Hoshijima K; Nightingale RW; Yu JR; Richardson WJ; Harper KD; Yamamoto H; Myers BS
    Spine (Phila Pa 1976); 1997 Jun; 22(11):1181-8. PubMed ID: 9201853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intervertebral spacer as an adjunct to anterior lumbar fusion. Part I. Design, fabrication, and testing of three prototypes.
    Moeini SM; Nasca RJ; Lemons JE; Montgomery RD
    J Spinal Disord; 1998 Apr; 11(2):129-35. PubMed ID: 9588469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Dislocation tendency, stabilizing effect and sintering tendency of different lumbar vertebrae cages in an in vitro experiment].
    Kettler A; Dietl R; Krammer M; Lumenta CB; Claes L; Wilke HJ
    Orthopade; 2002 May; 31(5):481-7. PubMed ID: 12089798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical comparison of anterior versus posterior lumbar threaded interbody fusion cages.
    Vishteh AG; Crawford NR; Chamberlain RH; Thramann JJ; Park SC; Craigo JB; Sonntag VK; Dickman CA
    Spine (Phila Pa 1976); 2005 Feb; 30(3):302-10. PubMed ID: 15682011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments.
    Kim Y
    Spine (Phila Pa 1976); 2001 Jul; 26(13):1437-42. PubMed ID: 11458147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical analysis of unilateral fixation with interbody cages.
    Chen HH; Cheung HH; Wang WK; Li A; Li KC
    Spine (Phila Pa 1976); 2005 Feb; 30(4):E92-6. PubMed ID: 15706329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical comparison of posterior lumbar interbody fusion cages.
    Rapoff AJ; Ghanayem AJ; Zdeblick TA
    Spine (Phila Pa 1976); 1997 Oct; 22(20):2375-9. PubMed ID: 9355218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Stabilizing effect and sintering tendency of 3 different cages and bone cement for fusion of cervical vertebrae segments].
    Wilke HJ; Kettler A; Claes L
    Orthopade; 2002 May; 31(5):472-80. PubMed ID: 12089797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.
    Tsantrizos A; Baramki HG; Zeidman S; Steffen T
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.
    Tencer AF; Hampton D; Eddy S
    Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage.
    Brodke DS; Dick JC; Kunz DN; McCabe R; Zdeblick TA
    Spine (Phila Pa 1976); 1997 Jan; 22(1):26-31. PubMed ID: 9122778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion.
    Sandhu HS; Toth JM; Diwan AD; Seim HB; Kanim LE; Kabo JM; Turner AS
    Spine (Phila Pa 1976); 2002 Mar; 27(6):567-75. PubMed ID: 11884903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do we need a transforaminal lumbar interbody fusion cage to increase the stability of functional spinal unit when comparing unilateral and bilateral fixation?
    Ulutaş M; Özkaya M; Yaman O; Demir T
    Proc Inst Mech Eng H; 2018 Jul; 232(7):655-664. PubMed ID: 29923451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of various cylinder diameters of implants for lumbar inter-corporeal spinal fusion on compressive strength on the FSU model].
    Placzek R; Birken L; Morlock M; Rüther W; Schneider E
    Biomed Tech (Berl); 1998 Sep; 43(9):253-6. PubMed ID: 9785620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of rigid and semi-rigid instrumentation under acute load on vertebrae treated with posterior lumbar interbody fusion/transforaminal lumbar interbody fusion procedures: An experimental study.
    Önen MR; Başgül C; Yılmaz İ; Özkaya M; Demir T; Naderi S
    Proc Inst Mech Eng H; 2018 Apr; 232(4):388-394. PubMed ID: 29393010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage.
    Ding JY; Qian S; Wan L; Huang B; Wang LG; Zhou Y
    Arch Orthop Trauma Surg; 2010 Apr; 130(4):565-71. PubMed ID: 20140621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?
    Kienle A; Graf N; Wilke HJ
    Spine J; 2016 Feb; 16(2):235-42. PubMed ID: 26409208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices.
    Kanayama M; Cunningham BW; Haggerty CJ; Abumi K; Kaneda K; McAfee PC
    J Neurosurg; 2000 Oct; 93(2 Suppl):259-65. PubMed ID: 11012057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion.
    Gödde S; Fritsch E; Dienst M; Kohn D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1693-9. PubMed ID: 12897494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lumbar sagittal contour after posterior interbody fusion: threaded devices alone versus vertical cages plus posterior instrumentation.
    Klemme WR; Owens BD; Dhawan A; Zeidman S; Polly DW
    Spine (Phila Pa 1976); 2001 Mar; 26(5):534-7. PubMed ID: 11317974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.