These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12089797)

  • 21. [Experimental fusion of the sheep cervical spine. Part II: Effect of growth factors and carrier systems on interbody fusion].
    Kandziora F; Scholz M; Pflugmacher R; Krummrey G; Schollmeier G; Schmidmaier G; Schnake KJ; Duda G; Raschke M; Haas NP
    Chirurg; 2002 Oct; 73(10):1025-38. PubMed ID: 12395162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading.
    Kettler A; Wilke HJ; Dietl R; Krammer M; Lumenta C; Claes L
    J Neurosurg; 2000 Jan; 92(1 Suppl):87-92. PubMed ID: 10616063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive preload improves the stability of anterior lumbar interbody fusion cage constructs.
    Patwardhan AG; Carandang G; Ghanayem AJ; Havey RM; Cunningham B; Voronov LI; Phillips FM
    J Bone Joint Surg Am; 2003 Sep; 85(9):1749-56. PubMed ID: 12954834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of supplemental translaminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads.
    Phillips FM; Cunningham B; Carandang G; Ghanayem AJ; Voronov L; Havey RM; Patwardhan AG
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1731-6. PubMed ID: 15303015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine].
    Khodadadyan-Klostermann C; Schaefer J; Schleicher P; Pflugmacher R; Eindorf T; Haas NP; Kandziora F
    Chirurg; 2004 Jul; 75(7):694-701. PubMed ID: 15258751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Biomechanicsl evaluation of a stand-alone interbody fusion cage based on porous TiO2/glass-ceramic on the human cervical spine].
    Korinth MC; Moersch S; Ragoss C; Schopphoff E
    Biomed Tech (Berl); 2003 Dec; 48(12):349-55. PubMed ID: 14740523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction of Segmental Stability of Goat Cervical Spine with Poly (D, L-lactic acid) Cage.
    Li XH; Song YM; Duan H
    Orthop Surg; 2015 Aug; 7(3):266-72. PubMed ID: 26311103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass composite. I. Implantation in the sheep cervical spine and radiological evaluation].
    Korinth MC; Hero T; Mahnken AH; Ragoss C; Scherer K
    Biomed Tech (Berl); 2004 Dec; 49(12):356-63. PubMed ID: 15655929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading-a biomechanical investigation.
    Oberkircher L; Krüger A; Hörth D; Hack J; Ruchholtz S; Fleege C; Rauschmann M; Arabmotlagh M
    Spine J; 2018 Mar; 18(3):525-531. PubMed ID: 29174458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine.
    Kandziora F; Schmidmaier G; Schollmeier G; Bail H; Pflugmacher R; Görke T; Wagner M; Raschke M; Mittlmeier T; Haas NP
    Spine (Phila Pa 1976); 2002 Aug; 27(16):1710-23. PubMed ID: 12195060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages.
    Krammer M; Dietl R; Lumenta CB; Kettler A; Wilke HJ; Büttner A; Claes L
    Acta Neurochir (Wien); 2001 Dec; 143(12):1217-22. PubMed ID: 11810385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical analysis of biodegradable interbody fusion cages augmented With poly(propylene glycol-co-fumaric acid).
    Kandziora F; Pflugmacher R; Kleemann R; Duda G; Wise DL; Trantolo DJ; Lewandrowski KU
    Spine (Phila Pa 1976); 2002 Aug; 27(15):1644-51. PubMed ID: 12163726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new stand-alone cervical anterior interbody fusion device: biomechanical comparison with established anterior cervical fixation devices.
    Scholz M; Reyes PM; Schleicher P; Sawa AG; Baek S; Kandziora F; Marciano FF; Crawford NR
    Spine (Phila Pa 1976); 2009 Jan; 34(2):156-60. PubMed ID: 19139665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot study of a new acrylic cage in a dog cervical spine fusion model.
    Farrokhi MR; Torabinezhad S; Ghajar KA
    J Spinal Disord Tech; 2010 Jun; 23(4):272-7. PubMed ID: 20087221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: an experimental study.
    Alkalay RN; Adamson R; Groff MW
    Spine J; 2018 Oct; 18(10):1867-1876. PubMed ID: 29526639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study.
    Wang ST; Goel VK; Fu CY; Kubo S; Choi W; Liu CL; Chen TH
    Spine (Phila Pa 1976); 2005 Jan; 30(1):62-7. PubMed ID: 15626983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs.
    Tsantrizos A; Andreou A; Aebi M; Steffen T
    Eur Spine J; 2000 Feb; 9(1):14-22. PubMed ID: 10766072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limitations of the cervical porcine spine in evaluating spinal implants in comparison with human cervical spinal segments: a biomechanical in vitro comparison of porcine and human cervical spine specimens with different instrumentation techniques.
    Schmidt R; Richter M; Claes L; Puhl W; Wilke HJ
    Spine (Phila Pa 1976); 2005 Jun; 30(11):1275-82. PubMed ID: 15928552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Cervical Interbody Cage Morphology, Material Composition, and Substrate Density on Cage Subsidence.
    Suh PB; Puttlitz C; Lewis C; Bal BS; McGilvray K
    J Am Acad Orthop Surg; 2017 Feb; 25(2):160-168. PubMed ID: 28009709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
    Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE
    Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.