These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12089799)

  • 21. Stability of transforaminal lumbar interbody fusion in the setting of retained facets and posterior fixation using transfacet or standard pedicle screws.
    Chin KR; Reis MT; Reyes PM; Newcomb AG; Neagoe A; Gabriel JP; Sung RD; Crawford NR
    Spine J; 2015 May; 15(5):1077-82. PubMed ID: 24210638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revision of transforaminal lumbar interbody fusion using anterior lumbar interbody fusion: a biomechanical study in nonosteoporotic bone.
    Ploumis A; Wu C; Mehbod A; Fischer G; Faundez A; Wu W; Transfeldt E
    J Neurosurg Spine; 2010 Jan; 12(1):82-7. PubMed ID: 20043769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study.
    Du L; Sun XJ; Zhou TJ; Li YC; Chen C; Zhao CQ; Zhang K; Zhao J
    BMC Musculoskelet Disord; 2017 Nov; 18(1):474. PubMed ID: 29162074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
    Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE
    Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biomechanical evaluation of asymmetrical posterior internal fixation for transforaminal lumbar interbody fusion with transfacetopedicular screws].
    Ao J; Jin AM; Zhao WD; Zhang H; Min SX; Yu B; Chen WY
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 May; 29(5):959-61, 965. PubMed ID: 19460720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical analysis of a novel posterior construct in a transforaminal lumbar interbody fusion model an in vitro study.
    Sethi A; Muzumdar AM; Ingalhalikar A; Vaidya R
    Spine J; 2011 Sep; 11(9):863-9. PubMed ID: 21802998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical analysis of lateral interbody fusion strategies for adjacent segment degeneration in the lumbar spine.
    Metzger MF; Robinson ST; Maldonado RC; Rawlinson J; Liu J; Acosta FL
    Spine J; 2017 Jul; 17(7):1004-1011. PubMed ID: 28323239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis. Influence on adjacent segmental degeneration.
    Tang S
    Saudi Med J; 2015 Aug; 36(8):993-6. PubMed ID: 26219453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: Biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device.
    Kim C; Harris JA; Muzumdar A; Khalil S; Sclafani JA; Raiszadeh K; Bucklen BS
    Clin Biomech (Bristol, Avon); 2017 Mar; 43():102-108. PubMed ID: 28235698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro.
    Cao Y; Liu F; Wan S; Liang Y; Jiang C; Feng Z; Jiang X; Chen Z
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():91-95. PubMed ID: 28898815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels.
    Ames CP; Acosta FL; Chi J; Iyengar J; Muiru W; Acaroglu E; Puttlitz CM
    Spine (Phila Pa 1976); 2005 Oct; 30(19):E562-6. PubMed ID: 16205329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Biomechanical Stability Study of Extraforaminal Lumbar Interbody Fusion on the Cadaveric Lumbar Spine Specimens.
    Guo S; Zeng C; Yan M; Han Y; Xia D; Sun G; Li L; Yang M; Tan J
    PLoS One; 2016; 11(12):e0168498. PubMed ID: 28005935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dislocation tendency, stabilizing effect and sintering tendency of different lumbar vertebrae cages in an in vitro experiment].
    Kettler A; Dietl R; Krammer M; Lumenta CB; Claes L; Wilke HJ
    Orthopade; 2002 May; 31(5):481-7. PubMed ID: 12089798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches.
    Areias B; Caetano SC; Sousa LC; Parente M; Jorge RN; Sousa H; Gonçalves JM
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):408-421. PubMed ID: 32189515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis.
    Kim HJ; Kang KT; Park SC; Kwon OH; Son J; Chang BS; Lee CK; Yeom JS; Lenke LG
    Spine J; 2017 May; 17(5):671-680. PubMed ID: 27867080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study.
    Keiler A; Schmoelz W; Erhart S; Gnanalingham K
    Spine (Phila Pa 1976); 2014 Aug; 39(17):E994-E1000. PubMed ID: 24875958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of cage design, supplemental posterior instrumentation and approach on primary stability of a lumbar interbody fusion - A biomechanical in vitro study.
    Schmoelz W; Sandriesser S; Loebl O; Bauer M; Krappinger D
    Clin Biomech (Bristol, Avon); 2017 Oct; 48():30-34. PubMed ID: 28719806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lumbar spine stability after combined application of interspinous fastener and modified posterior lumbar interbody fusion: a biomechanical study.
    Yu X; Zhu L; Su Q
    Arch Orthop Trauma Surg; 2014 May; 134(5):623-9. PubMed ID: 24676650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system.
    Wilke HJ; Heuer F; Schmidt H
    Spine (Phila Pa 1976); 2009 Feb; 34(3):255-61. PubMed ID: 19179920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical Stability Afforded by Unilateral Versus Bilateral Pedicle Screw Fixation with and without Interbody Support Using Lateral Lumbar Interbody Fusion.
    Godzik J; Martinez-Del-Campo E; Newcomb AGUS; Reis MT; Perez-Orribo L; Whiting AC; Singh V; Kelly BP; Crawford NR
    World Neurosurg; 2018 May; 113():e439-e445. PubMed ID: 29462730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.