These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
646 related articles for article (PubMed ID: 12091151)
1. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
2. Interaction of nutrient limitation and elevated CO2 concentration on carbon assimilation of a tropical tree seedling (Cedrela odorata). Carswell FE; Grace J; Lucas ME; Jarvis PG Tree Physiol; 2000 Aug; 20(14):977-86. PubMed ID: 11303573 [TBL] [Abstract][Full Text] [Related]
3. Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Blaschke L; Forstreuter M; Sheppard LJ; Leith IK; Murray MB; Polle A Tree Physiol; 2002 May; 22(7):469-77. PubMed ID: 11986050 [TBL] [Abstract][Full Text] [Related]
4. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions. Ponton S; Dupouey JL; Bréda N; Dreyer E Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766 [TBL] [Abstract][Full Text] [Related]
5. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
6. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
7. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Allen LH; Kakani VG; Vu JC; Boote KJ J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489 [TBL] [Abstract][Full Text] [Related]
8. Growth rate and survivorship of drought: CO2 effects on the presumed tradeoff in seedlings of five woody legumes. Polley HW; Tischler CR; Johnson HB; Derner JD Tree Physiol; 2002 Apr; 22(6):383-91. PubMed ID: 11960763 [TBL] [Abstract][Full Text] [Related]
9. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732 [TBL] [Abstract][Full Text] [Related]
10. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981 [TBL] [Abstract][Full Text] [Related]
11. Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Rieger M; Lo Bianco R; Okie WR Tree Physiol; 2003 Jan; 23(1):51-8. PubMed ID: 12511304 [TBL] [Abstract][Full Text] [Related]
12. Effects of CO Tolley LC; Strain BR Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662 [TBL] [Abstract][Full Text] [Related]
13. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance. Solari LI; DeJong TM J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626 [TBL] [Abstract][Full Text] [Related]
14. Ontogeny affects response of northern red oak seedlings to elevated CO Anderson PD; Tomlinson PT New Phytol; 1998 Nov; 140(3):477-491. PubMed ID: 33862872 [TBL] [Abstract][Full Text] [Related]
15. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes. Egea G; González-Real MM; Martin-Gorriz B; Baille A Tree Physiol; 2014 Jun; 34(6):619-29. PubMed ID: 24970267 [TBL] [Abstract][Full Text] [Related]
16. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Staudt M; Joffre R; Rambal S; Kesselmeier J Tree Physiol; 2001 May; 21(7):437-45. PubMed ID: 11340044 [TBL] [Abstract][Full Text] [Related]
17. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations. Overdieck D; Ziche D; Böttcher-Jungclaus K Tree Physiol; 2007 Feb; 27(2):261-8. PubMed ID: 17241968 [TBL] [Abstract][Full Text] [Related]
18. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410 [TBL] [Abstract][Full Text] [Related]
19. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Reef R; Slot M; Motro U; Motro M; Motro Y; Adame MF; Garcia M; Aranda J; Lovelock CE; Winter K Photosynth Res; 2016 Aug; 129(2):159-70. PubMed ID: 27259536 [TBL] [Abstract][Full Text] [Related]
20. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]