BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12091399)

  • 1. Characterization of the macrophages associated with the tunica vasculosa lentis of the rat eye.
    McMenamin PG; Djano J; Wealthall R; Griffin BJ
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2076-82. PubMed ID: 12091399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental scanning electron microscopic study of macrophages associated with the tunica vasculosa lentis in the developing rat eye.
    Djano J; Griffin B; van Bruggen I; McMenamin PG
    Br J Ophthalmol; 1999 Dec; 83(12):1384-5. PubMed ID: 10574818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel rat model to study the functions of macrophages during normal development and pathophysiology of the eye.
    Hose S; Zigler JS; Sinha D
    Immunol Lett; 2005 Jan; 96(2):299-302. PubMed ID: 15585337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regression of the tunica vasculosa lentis in the postnatal rat.
    Latker CH; Kuwabara T
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):689-99. PubMed ID: 7298273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tunica vasculosa lentis; an expedient system for studying vascular formation and regression.
    Wang JL; Toida K; Uehara Y
    J Electron Microsc (Tokyo); 1990; 39(1):46-9. PubMed ID: 2358772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury.
    Zhang C; Lam TT; Tso MO
    Exp Eye Res; 2005 Dec; 81(6):700-9. PubMed ID: 15967434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal regression of the tunica vasculosa lentis.
    Skapinker R; Rothberg AD
    J Perinatol; 1987; 7(4):279-81. PubMed ID: 3505262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophages in the retina of normal Lewis rats and their dynamics after injection of lipopolysaccharide.
    Yang P; de Vos AF; Kijlstra A
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):77-85. PubMed ID: 8550337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy.
    McMenamin PG; Wealthall RJ; Deverall M; Cooper SJ; Griffin B
    Cell Tissue Res; 2003 Sep; 313(3):259-69. PubMed ID: 12920643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of rat thymic macrophages. Phenotypic characterization and possible relationships between different cell subsets.
    Vicente A; Varas A; Moreno J; Sacedón R; Jiménez E; Zapata AG
    Immunology; 1995 May; 85(1):99-105. PubMed ID: 7635528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunophenotypical changes of neoplastic cells and tumor-associated macrophages in a rat dendritic cell sarcoma-derived transplantable tumor line (KB-D8).
    Kawashima M; Ide M; Nakanishi M; Kuwamura M; Kumagai D; Yamate J
    Virchows Arch; 2003 Feb; 442(2):141-50. PubMed ID: 12596065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage localization in the developing lens primordium of the mouse embryo - an immunohistochemical study.
    Nishitani K; Sasaki K
    Exp Eye Res; 2006 Jul; 83(1):223-8. PubMed ID: 16549063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage mobilization and morphology during lens regeneration from the iris epithelium in newts: studies with correlated scanning and transmission electron microscopy.
    Reyer RW
    Am J Anat; 1990 Aug; 188(4):345-65. PubMed ID: 2392992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the macrophage population of the rat superior cervical ganglion after postganglionic nerve injury.
    Schreiber RC; Shadiack AM; Bennett TA; Sedwick CE; Zigmond RE
    J Neurobiol; 1995 Jun; 27(2):141-53. PubMed ID: 7658197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical and topographic studies of dendritic cells and macrophages in human fetal cornea.
    Diaz-Araya CM; Madigan MC; Provis JM; Penfold PL
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):644-56. PubMed ID: 7890495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the changes in the non-neuronal cell populations of the superior cervical ganglia following decentralization and axotomy.
    Schreiber RC; Vaccariello SA; Boeshore K; Shadiack AM; Zigmond RE
    J Neurobiol; 2002 Oct; 53(1):68-79. PubMed ID: 12360584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of the human posterior tunica vasculosa lentis during early gestation.
    Sellheyer K; Spitznas M
    Graefes Arch Clin Exp Ophthalmol; 1987; 225(5):377-83. PubMed ID: 3666482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye.
    Kezic J; Xu H; Chinnery HR; Murphy CC; McMenamin PG
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1599-608. PubMed ID: 18385080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal changes in the distribution and number of macrophage-lineage cells in the periodontal membrane of the rat molar in response to experimental tooth movement.
    Nakamura K; Sahara N; Deguchi T
    Arch Oral Biol; 2001 Jul; 46(7):593-607. PubMed ID: 11369314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct functional types of macrophage in dorsal root ganglia and spinal nerves proximal to sciatic and spinal nerve transections in the rat.
    Hu P; McLachlan EM
    Exp Neurol; 2003 Dec; 184(2):590-605. PubMed ID: 14769352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.