BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

797 related articles for article (PubMed ID: 12091429)

  • 1. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells.
    Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells.
    Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis of isolated single cortical fibers of rat lens.
    Srivastava SK; Wang LF; Ansari NH; Bhatnagar A
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of calpains in opacification induced by Ca2+-overload in ovine lens culture.
    Lee HY; Morton JD; Sanderson J; Bickerstaffe R; Robertson LJ
    Vet Ophthalmol; 2008; 11(6):347-55. PubMed ID: 19046274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization.
    Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Src family kinases in cortical cataract formation.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2293-300. PubMed ID: 12091430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens.
    Wang LF; Dhir P; Bhatnagar A; Srivastava SK
    Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cataract formation by a semiquinone metabolite of acetaminophen in mice: possible involvement of Ca(2+)and calpain activation.
    Qian W; Shichi H
    Exp Eye Res; 2000 Dec; 71(6):567-74. PubMed ID: 11095908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit.
    Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR
    Curr Eye Res; 1998 Jun; 17(6):623-35. PubMed ID: 9663852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis.
    Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK
    Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitex negundo attenuates calpain activation and cataractogenesis in selenite models.
    Rooban BN; Lija Y; Biju PG; Sasikala V; Sahasranamam V; Abraham A
    Exp Eye Res; 2009 Mar; 88(3):575-82. PubMed ID: 19094987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolysis in human lens epithelium determined by a cell-permeable substrate.
    Karlsson JO; Andersson M; Kling-Petersen A; Sjöstrand J
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):261-4. PubMed ID: 9888455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification.
    Gupta SK; Srivastava S; Trivedi D; Joshi S; Halder N
    Curr Eye Res; 2005 Jul; 30(7):583-91. PubMed ID: 16020293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular calcium level required for calpain activation in a single myocardial cell.
    Matsumura Y; Saeki E; Otsu K; Morita T; Takeda H; Kuzuya T; Hori M; Kusuoka H
    J Mol Cell Cardiol; 2001 Jun; 33(6):1133-42. PubMed ID: 11444918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical properties of lens-specific calpain Lp85.
    Shih M; Ma H; Nakajima E; David LL; Azuma M; Shearer TR
    Exp Eye Res; 2006 Jan; 82(1):146-52. PubMed ID: 16054132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart.
    Singh RB; Chohan PK; Dhalla NS; Netticadan T
    J Mol Cell Cardiol; 2004 Jul; 37(1):101-10. PubMed ID: 15242740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.