BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12091717)

  • 1. Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.
    Talbott LD; Zhu J; Han SW; Zeiger E
    Plant Cell Physiol; 2002 Jun; 43(6):639-46. PubMed ID: 12091717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light.
    Frechilla S; Zhu J; Talbott LD; Zeiger E
    Plant Cell Physiol; 1999 Sep; 40(9):949-54. PubMed ID: 10588066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of guard cell- or mesophyll cell-localized phytochromes in stomatal responses to blue, red, and far-red light.
    Weraduwage SM; Frame MK; Sharkey TD
    Planta; 2022 Aug; 256(3):55. PubMed ID: 35932433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis.
    Talbott LD; Shmayevich IJ; Chung Y; Hammad JW; Zeiger E
    Plant Physiol; 2003 Dec; 133(4):1522-9. PubMed ID: 14576287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protective function of the xanthophyll cycle in photosynthesis.
    Sarry JE; Montillet JL; Sauvaire Y; Havaux M
    FEBS Lett; 1994 Oct; 353(2):147-50. PubMed ID: 7926040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus.
    Masojídek J; Kopecký J; Koblízek M; Torzillo G
    Plant Biol (Stuttg); 2004 May; 6(3):342-9. PubMed ID: 15143443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.
    Gilmore AM; Shinkarev VP; Hazlett TL; Govindjee G
    Biochemistry; 1998 Sep; 37(39):13582-93. PubMed ID: 9753445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The guard cell chloroplast: a perspective for the twenty-first century.
    Zeiger E; Talbott LD; Frechilla S; Srivastava A; Zhu J
    New Phytol; 2002 Mar; 153(3):415-424. PubMed ID: 33863211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism.
    Quiñones MA; Lu Z; Zeiger E
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2224-8. PubMed ID: 11607640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal Limitation to Carbon Gain in Paphiopedilum sp. (Orchidaceae) and Its Reversal by Blue Light.
    Zeiger E; Grivet C; Assmann SM; Deitzer GF; Hannegan MW
    Plant Physiol; 1985 Feb; 77(2):456-60. PubMed ID: 16664074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress.
    Baroli I; Do AD; Yamane T; Niyogi KK
    Plant Cell; 2003 Apr; 15(4):992-1008. PubMed ID: 12671093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa.
    Schubert H; Kroon BM; Matthijs HC
    J Biol Chem; 1994 Mar; 269(10):7267-72. PubMed ID: 8125939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in Chlorella.
    Seaton GG; Hurry VM; Rohozinski J
    FEBS Lett; 1996 Jul; 389(3):319-23. PubMed ID: 8766724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology and xanthophyll cycle activity of Nannochloropsis gaditana.
    Gentile MP; Blanch HW
    Biotechnol Bioeng; 2001 Oct; 75(1):1-12. PubMed ID: 11536121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana.
    Wang FF; Lian HL; Kang CY; Yang HQ
    Mol Plant; 2010 Jan; 3(1):246-59. PubMed ID: 19965572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of blue light-stimulated stomatal opening by green light.
    Frechilla S; Talbott LD; Bogomolni RA; Zeiger E
    Plant Cell Physiol; 2000 Feb; 41(2):171-6. PubMed ID: 10795311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Lohr M; Wilhelm C
    Planta; 2001 Feb; 212(3):382-91. PubMed ID: 11289603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants.
    Suetsugu N; Wada M
    Photochem Photobiol; 2007; 83(1):87-93. PubMed ID: 16542113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.