BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12091719)

  • 1. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance.
    Ma JF; Shen R; Zhao Z; Wissuwa M; Takeuchi Y; Ebitani T; Yano M
    Plant Cell Physiol; 2002 Jun; 43(6):652-9. PubMed ID: 12091719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A major QTL for resistance of rice to the parasitic plant Striga hermonthica is not dependent on genetic background.
    Swarbrick PJ; Scholes JD; Press MC; Slate J
    Pest Manag Sci; 2009 May; 65(5):528-32. PubMed ID: 19222023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association mapping of aluminum toxicity tolerance and fine mapping of a candidate gene for Nrat1 in rice.
    Tao Y; Niu Y; Wang Y; Chen T; Naveed SA; Zhang J; Xu J; Li Z
    PLoS One; 2018; 13(6):e0198589. PubMed ID: 29894520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase.
    Ueda T; Sato T; Hidema J; Hirouchi T; Yamamoto K; Kumagai T; Yano M
    Genetics; 2005 Dec; 171(4):1941-50. PubMed ID: 15965242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress.
    Chen RF; Shen RF; Gu P; Dong XY; DU CW; Ma JF
    Ann Bot; 2006 Aug; 98(2):389-95. PubMed ID: 16735401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative trait loci mapping associated with plant regeneration ability from seed derived calli in rice (Oryza sativa L.).
    Kwon YS; Kim KM; Eun MY; Sohn JK
    Mol Cells; 2001 Feb; 11(1):64-7. PubMed ID: 11266122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait.
    Hoekenga OA; Vision TJ; Shaff JE; Monforte AJ; Lee GP; Howell SH; Kochian LV
    Plant Physiol; 2003 Jun; 132(2):936-48. PubMed ID: 12805622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms.
    Famoso AN; Clark RT; Shaff JE; Craft E; McCouch SR; Kochian LV
    Plant Physiol; 2010 Aug; 153(4):1678-91. PubMed ID: 20538888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH.
    Watanabe T; Okada K
    Ann Bot; 2005 Jan; 95(2):379-85. PubMed ID: 15546924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems.
    Nishimura A; Ashikari M; Lin S; Takashi T; Angeles ER; Yamamoto T; Matsuoka M
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11940-4. PubMed ID: 16091467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice.
    Su C; Wang J; Feng J; Jiang S; Man F; Jiang L; Zhao M
    BMC Plant Biol; 2024 Jun; 24(1):618. PubMed ID: 38937693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan.
    Kobayashi A; Hori K; Yamamoto T; Yano M
    Rice (N Y); 2018 Apr; 11(1):15. PubMed ID: 29629486
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Arbelaez JD; Maron LG; Jobe TO; PiƱeros MA; Famoso AN; Rebelo AR; Singh N; Ma Q; Fei Z; Kochian LV; McCouch SR
    Plant Direct; 2017 Oct; 1(4):e00014. PubMed ID: 31245663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellin-Mediated Sensitivity of Rice Roots to Aluminum Stress.
    Lu L; Chen X; Tan Q; Li W; Sun Y; Zhang Z; Song Y; Zeng R
    Plants (Basel); 2024 Feb; 13(4):. PubMed ID: 38498546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of an ART1-Interacting Gene
    Liu F; Ma D; Yu J; Meng R; Wang Z; Zhang B; Chen X; Zhang L; Peng L; Xia J
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental context of phenotypic plasticity in flowering time in sorghum and rice.
    Guo T; Wei J; Li X; Yu J
    J Exp Bot; 2024 Feb; 75(3):1004-1015. PubMed ID: 37819624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the 4-coumarate:coenzyme A ligase 4CL4 in rice phosphorus acquisition and rhizosphere microbe recruitment via root growth enlargement.
    Xiao X; Hu AY; Dong XY; Shen RF; Zhao XQ
    Planta; 2023 May; 258(1):7. PubMed ID: 37222817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice.
    Xie W; Liu S; Gao H; Wu J; Liu D; Kinoshita T; Huang CF
    Plant Physiol; 2023 May; 192(2):1498-1516. PubMed ID: 36823690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress.
    Wang J; Su C; Cui Z; Huang L; Gu S; Jiang S; Feng J; Xu H; Zhang W; Jiang L; Zhao M
    Front Genet; 2022; 13():1063984. PubMed ID: 36704350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Patterns of Rhizosphere Microbiota Associated With Rice Genotypes Differing in Aluminum Tolerance in an Acid Sulfate Soil.
    Xiao X; Wang JL; Li JJ; Li XL; Dai XJ; Shen RF; Zhao XQ
    Front Microbiol; 2022; 13():933722. PubMed ID: 35783428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.