BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12093275)

  • 21. Structural and catalytic diversity within the amidohydrolase superfamily.
    Seibert CM; Raushel FM
    Biochemistry; 2005 May; 44(17):6383-91. PubMed ID: 15850372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction mechanism for the conversion of 5-monosubstituted hydantoins to enantiomerically pure L-amino acids.
    Völkel D; Wagner F
    Ann N Y Acad Sci; 1995 Mar; 750():1-9. PubMed ID: 7785836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allantoinase and dihydroorotase binding and inhibition by flavonols and the substrates of cyclic amidohydrolases.
    Peng WF; Huang CY
    Biochimie; 2014 Jun; 101():113-22. PubMed ID: 24418229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of D-stereospecific amidohydrolase from Streptomyces sp. 82F2 - insight into the structural factors for substrate specificity.
    Arima J; Shimone K; Miyatani K; Tsunehara Y; Isoda Y; Hino T; Nagano S
    FEBS J; 2016 Jan; 283(2):337-49. PubMed ID: 26513520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and Soluble Expression of D-Hydantoinase from Pseudomonas fluorescens for the Synthesis of D-Amino Acids.
    Xu GC; Li L; Han RZ; Dong JJ; Ni Y
    Appl Biochem Biotechnol; 2016 Apr; 179(1):1-15. PubMed ID: 26821258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases.
    Huang CY
    PLoS One; 2015; 10(5):e0127634. PubMed ID: 25993634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of monometallic dihydropyrimidinase and the human dihydroorotase domain K1556A mutant reveal no lysine carbamylation within the active site.
    Cheng JH; Huang YH; Lin JJ; Huang CY
    Biochem Biophys Res Commun; 2018 Oct; 505(2):439-444. PubMed ID: 30268498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbamoylases: characteristics and applications in biotechnological processes.
    Martínez-Rodríguez S; Martínez-Gómez AI; Rodríguez-Vico F; Clemente-Jiménez JM; Las Heras-Vázquez FJ
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):441-58. PubMed ID: 19830420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The stereoselectivity and hydrolysis efficiency of recombinant D-hydantoinase from Vigna angularis Against 5-benzylhydantoin derivatives with halogen and methyl substituents.
    Latacz G; Kieć-Kononowicz K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):698-704. PubMed ID: 25342262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring.
    Kim GJ; Kim HS
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):295-302. PubMed ID: 9537960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.
    Thoden JB; Phillips GN; Neal TM; Raushel FM; Holden HM
    Biochemistry; 2001 Jun; 40(24):6989-97. PubMed ID: 11401542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp. strain A17p-4.
    Soong CL; Ogawa J; Honda M; Shimizu S
    Appl Environ Microbiol; 1999 Apr; 65(4):1459-62. PubMed ID: 10515797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenetic analysis and biochemical characterization of a thermostable dihydropyrimidinase from alkaliphilic Bacillus sp. TS-23.
    Lin LL; Hsu WH; Hsu WY; Kan SC; Hu HY
    Antonie Van Leeuwenhoek; 2005; 88(3-4):189-97. PubMed ID: 16284925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereoselective hydrolysis of aryl-substituted dihydropyrimidines by hydantoinases.
    Engel U; Syldatk C; Rudat J
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1221-31. PubMed ID: 22120620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization and preliminary crystallographic studies of the recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114.
    Martínez-Rodríguez S; González-Ramírez LA; Clemente-Jiménez JM; Rodríguez-Vico F; Las Heras-Vázquez FJ; Gavira JA; García-Ruíz JM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1223-6. PubMed ID: 17142902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of the hydantoin cleaving enzymes from Arthrobacter aurescens DSM 3747.
    Ragnitz K; Pietzsch M; Syldatk C
    J Biotechnol; 2001 Dec; 92(2):179-86. PubMed ID: 11640987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Basis for pH-Dependent Oligomerization of Dihydropyrimidinase from
    Cheng JH; Huang CC; Huang YH; Huang CY
    Bioinorg Chem Appl; 2018; 2018():9564391. PubMed ID: 29666631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of metal-dependent allantoinase from Escherichia coli.
    Kim K; Kim MI; Chung J; Ahn JH; Rhee S
    J Mol Biol; 2009 Apr; 387(5):1067-74. PubMed ID: 19248789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes.
    Peat TS; Balotra S; Wilding M; Hartley CJ; Newman J; Scott C
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.