These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 12093358)

  • 1. The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers.
    Monks TJ; Jones DC
    Curr Drug Metab; 2002 Aug; 3(4):425-38. PubMed ID: 12093358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicology of quinone-thioethers.
    Monks TJ; Lau SS
    Crit Rev Toxicol; 1992; 22(5-6):243-70. PubMed ID: 1489507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinone-thioether-mediated nephrotoxicity.
    Lau SS
    Drug Metab Rev; 1995; 27(1-2):125-41. PubMed ID: 7641573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of quinones in toxicology.
    Bolton JL; Trush MA; Penning TM; Dryhurst G; Monks TJ
    Chem Res Toxicol; 2000 Mar; 13(3):135-60. PubMed ID: 10725110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinone imines as biological reactive intermediates.
    Porubek D; Rundgren M; Larsson R; Albano E; Ross D; Nelson SD; Moldéus P
    Adv Exp Med Biol; 1986; 197():631-44. PubMed ID: 3766286
    [No Abstract]   [Full Text] [Related]  

  • 8. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites.
    Klopčič I; Dolenc MS
    Chem Res Toxicol; 2019 Jan; 32(1):1-34. PubMed ID: 30500181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones.
    Bolton JL; Shen L
    Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and toxicological consequences of quinone methide formation.
    Thompson DC; Thompson JA; Sugumaran M; Moldéus P
    Chem Biol Interact; 1993 Feb; 86(2):129-62. PubMed ID: 8448810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical rearrangement of phenol-epoxide metabolites of polycyclic aromatic hydrocarbons to quinone-methides.
    Hulbert PB; Grover PL
    Biochem Biophys Res Commun; 1983 Nov; 117(1):129-34. PubMed ID: 6661217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure activity relationships for the chemical behaviour and toxicity of electrophilic quinones/quinone methides.
    Rietjens IM; Awad HM; Boersma MG; van Iersel ML; Vervoort J; Van Bladeren PJ
    Adv Exp Med Biol; 2001; 500():11-21. PubMed ID: 11764920
    [No Abstract]   [Full Text] [Related]  

  • 17. Polycyclic aromatic hydrocarbon quinones and glutathione thioethers as substrates and inhibitors of the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase.
    Chung HS; Harvey RG; Armstrong RN; Jarabak J
    J Biol Chem; 1987 Sep; 262(26):12448-51. PubMed ID: 3624267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical mechanisms for skin sensitization by aromatic compounds with hydroxy and amino groups.
    Aptula AO; Enoch SJ; Roberts DW
    Chem Res Toxicol; 2009 Sep; 22(9):1541-7. PubMed ID: 19678610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When quinones meet amino acids: chemical, physical and biological consequences.
    Bittner S
    Amino Acids; 2006 May; 30(3):205-24. PubMed ID: 16601927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.
    Hughes TB; Swamidass SJ
    Chem Res Toxicol; 2017 Feb; 30(2):642-656. PubMed ID: 28099803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.