These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 12093902)

  • 41. Structure of the sulfide-reactive hemoglobin from the clam Lucina pectinata. Crystallographic analysis at 1.5 A resolution.
    Rizzi M; Wittenberg JB; Coda A; Fasano M; Ascenzi P; Bolognesi M
    J Mol Biol; 1994 Nov; 244(1):86-99. PubMed ID: 7966324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct observation of ligand migration within human hemoglobin at work.
    Shibayama N; Sato-Tomita A; Ohki M; Ichiyanagi K; Park SY
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4741-4748. PubMed ID: 32071219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp.
    Tarricone C; Galizzi A; Coda A; Ascenzi P; Bolognesi M
    Structure; 1997 Apr; 5(4):497-507. PubMed ID: 9115439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct observation of photolysis-induced tertiary structural changes in hemoglobin.
    Adachi S; Park SY; Tame JR; Shiro Y; Shibayama N
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7039-44. PubMed ID: 12773618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The crystal structure of horse deoxyhaemoglobin trapped in the high-affinity (R) state.
    Wilson J; Phillips K; Luisi B
    J Mol Biol; 1996 Dec; 264(4):743-56. PubMed ID: 8980683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Movements at the hemoglobin A-hemes and their role in ligand binding, analyzed by X-ray crystallography.
    Dodson E; Dodson G
    Biopolymers; 2009 Dec; 91(12):1056-63. PubMed ID: 19353640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of Heme Pocket Water in Allosteric Regulation of Ligand Reactivity in Human Hemoglobin.
    Esquerra RM; Bibi BM; Tipgunlakant P; Birukou I; Soman J; Olson JS; Kliger DS; Goldbeck RA
    Biochemistry; 2016 Jul; 55(29):4005-17. PubMed ID: 27355904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structures of Parasponia and Trema hemoglobins: differential heme coordination is linked to quaternary structure.
    Kakar S; Sturms R; Tiffany A; Nix JC; DiSpirito AA; Hargrove MS
    Biochemistry; 2011 May; 50(20):4273-80. PubMed ID: 21491905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capturing the hemoglobin allosteric transition in a single crystal form.
    Shibayama N; Sugiyama K; Tame JR; Park SY
    J Am Chem Soc; 2014 Apr; 136(13):5097-105. PubMed ID: 24635037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variable subunit contact and cooperativity of hemoglobins.
    Shionyu M; Takahashi K; Gō M
    J Mol Evol; 2001; 53(4-5):416-29. PubMed ID: 11675601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The solution structure of the recombinant hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 in its hemichrome state.
    Falzone CJ; Christie Vu B; Scott NL; Lecomte JT
    J Mol Biol; 2002 Dec; 324(5):1015-29. PubMed ID: 12470956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed mutations of human hemoglobin at residue 35beta: a residue at the intersection of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces.
    Kavanaugh JS; Weydert JA; Rogers PH; Arnone A; Hui HL; Wierzba AM; Kwiatkowski LD; Paily P; Noble RW; Bruno S; Mozzarelli A
    Protein Sci; 2001 Sep; 10(9):1847-55. PubMed ID: 11514675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola.
    Mitchell DT; Kitto GB; Hackert ML
    J Mol Biol; 1995 Aug; 251(3):421-31. PubMed ID: 7650740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of T state haemoglobin with oxygen bound at all four haems.
    Paoli M; Liddington R; Tame J; Wilkinson A; Dodson G
    J Mol Biol; 1996 Mar; 256(4):775-92. PubMed ID: 8642597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of relaxed-state human hemoglobin: insight into ligand uptake, transport and release.
    Jenkins JD; Musayev FN; Danso-Danquah R; Abraham DJ; Safo MK
    Acta Crystallogr D Biol Crystallogr; 2009 Jan; 65(Pt 1):41-8. PubMed ID: 19153465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi.
    D'Avino R; Caruso C; Tamburrini M; Romano M; Rutigliano B; Polverino de Laureto P; Camardella L; Carratore V; di Prisco G
    J Biol Chem; 1994 Apr; 269(13):9675-81. PubMed ID: 8144556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Liganded and unliganded forms of Antarctic fish haemoglobins in polyethylene glycol: crystallization of an R-state haemichrome intermediate.
    Riccio A; Vitagliano L; di Prisco G; Zagari A; Mazzarella L
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1144-6. PubMed ID: 11468400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural analysis of Urechis caupo hemoglobin.
    Kolatkar PR; Hackert ML; Riggs AF
    J Mol Biol; 1994 Mar; 237(1):87-97. PubMed ID: 8133523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.