These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 12094768)
1. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes]. Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768 [TBL] [Abstract][Full Text] [Related]
2. [Kinetic parameters of single ion channels and stationary conductivities of phytotoxin modified lipid bilayers]. Ostroumova OS; Gur'nev FA; Takemoto JY; Shchagina LV; Malev VV Tsitologiia; 2005; 47(4):338-43. PubMed ID: 16706157 [TBL] [Abstract][Full Text] [Related]
3. [Interaction between filamentous actin and lipid bilayer causes the increase of syringomycin E channel-forming activity]. Bessonov AN; Gur'nev FA; Kuznetsova IM; Takemoto JY; Turoverov KK; Malev VV; Shchagina LV Tsitologiia; 2004; 46(7):628-33. PubMed ID: 15473373 [TBL] [Abstract][Full Text] [Related]
4. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Hutchison ML; Gross DC Mol Plant Microbe Interact; 1997 Apr; 10(3):347-54. PubMed ID: 9100379 [TBL] [Abstract][Full Text] [Related]
5. The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. Carpaneto A; Dalla Serra M; Menestrina G; Fogliano V; Gambale F J Membr Biol; 2002 Aug; 188(3):237-48. PubMed ID: 12181614 [TBL] [Abstract][Full Text] [Related]
6. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Dalla Serra M; Fagiuoli G; Nordera P; Bernhart I; Della Volpe C; Di Giorgio D; Ballio A; Menestrina G Mol Plant Microbe Interact; 1999 May; 12(5):391-400. PubMed ID: 10226372 [TBL] [Abstract][Full Text] [Related]
7. Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. Dalla Serra M; Bernhart I; Nordera P; Di Giorgio D; Ballio A; Menestrina G Mol Plant Microbe Interact; 1999 May; 12(5):401-9. PubMed ID: 10226373 [TBL] [Abstract][Full Text] [Related]
8. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Agner G; Kaulin YA; Gurnev PA; Szabo Z; Schagina LV; Takemoto JY; Blasko K Bioelectrochemistry; 2000 Dec; 52(2):161-7. PubMed ID: 11129239 [TBL] [Abstract][Full Text] [Related]
9. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers]. Efimova SS; Ostroumova OS; Malev VV; Shchagina LV Tsitologiia; 2011; 53(5):450-6. PubMed ID: 21786689 [TBL] [Abstract][Full Text] [Related]
10. Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: dependence on the electrolyte concentration in the bathing solution. Schagina LV; Kaulin YA; Feigin AM; Takemoto JY; Brand JG; Malev VV Membr Cell Biol; 1998; 12(4):537-55. PubMed ID: 10367570 [TBL] [Abstract][Full Text] [Related]
11. [Effect of electrolyte composition of various solutions on potential-sensitive ion channels, formed by syringomycin E in lipid bilayers]. Kaulin IuA; Shchagina LV Tsitologiia; 1999; 41(7):610-4. PubMed ID: 10496022 [TBL] [Abstract][Full Text] [Related]
12. Altering the activity of syringomycin E via the membrane dipole potential. Ostroumova OS; Malev VV; Bessonov AN; Takemoto JY; Schagina LV Langmuir; 2008 Apr; 24(7):2987-91. PubMed ID: 18324870 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes. Hianik T; Laputková G Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413 [TBL] [Abstract][Full Text] [Related]
14. A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes. Masson L; Schwab G; Mazza A; Brousseau R; Potvin L; Schwartz JL Biochemistry; 2004 Sep; 43(38):12349-57. PubMed ID: 15379574 [TBL] [Abstract][Full Text] [Related]
15. Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae, are channel forming peptides active on biological and model membranes. Coraiola M; Paletti R; Fiore A; Fogliano V; Dalla Serra M J Pept Sci; 2008 Apr; 14(4):496-502. PubMed ID: 18085513 [TBL] [Abstract][Full Text] [Related]
16. [Conductance of phytotoxin channels in the presence of large organic ions]. Ostroumova OS; Efimova SS; Shchagina LV Tsitologiia; 2009; 51(8):670-5. PubMed ID: 19799351 [TBL] [Abstract][Full Text] [Related]
18. Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin. Krasilnikov OV; Sabirov RZ Gen Physiol Biophys; 1989 Jun; 8(3):213-22. PubMed ID: 2475386 [TBL] [Abstract][Full Text] [Related]
19. Memory is a property of an ion channels pool: ion channels formed by Staphylococcus aureus alpha-toxin. Krasilnikov OV; Merzliak PG; Sabirov RZ; Tashmuk-Hamedov BA Gen Physiol Biophys; 1990 Dec; 9(6):569-75. PubMed ID: 1706676 [TBL] [Abstract][Full Text] [Related]
20. Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. Neumeyer T; Tonello F; Dal Molin F; Schiffler B; Orlik F; Benz R Biochemistry; 2006 Mar; 45(9):3060-8. PubMed ID: 16503661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]