BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12094799)

  • 21. Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization.
    Ullah AH
    Prep Biochem; 1988; 18(4):459-71. PubMed ID: 2852807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of α-galactosidase from Aspergillus foetidus MTCC 6322 by solid state fermentation and its application in soymilk hydrolysis.
    Boopathy NR; Gupta RK; Ramudu KN
    Indian J Exp Biol; 2016 Jan; 54(1):72-5. PubMed ID: 26891555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of proteases by Rhizopus oligosporus IHS13 in low-cost medium by solid-state fermentation.
    Haq IU; Mukhtar H
    J Basic Microbiol; 2004; 44(4):280-7. PubMed ID: 15266600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bioprocess for the production of phytase from Schizophyllum commune: studies of its optimization, profile of fermentation parameters, characterization and stability.
    Salmon DN; Piva LC; Binati RL; Rodrigues C; Vandenberghe LP; Soccol CR; Spier MR
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1067-79. PubMed ID: 22349925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves.
    Kumar R; Sharma J; Singh R
    Microbiol Res; 2007; 162(4):384-90. PubMed ID: 16870410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cultivating conditions on alpha-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation.
    Liu CQ; Chen QH; Cheng QJ; Wang JL; He GQ
    J Zhejiang Univ Sci B; 2007 May; 8(5):371-6. PubMed ID: 17542067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake.
    Singh B; Satyanarayana T
    Appl Biochem Biotechnol; 2006 Jun; 133(3):239-50. PubMed ID: 16720904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of inoculum composition on selected bioactive and nutritional parameters of grass pea tempeh obtained by mixed-culture fermentation with Rhizopus oligosporus and Aspergillus oryzae strains.
    Starzynska-Janiszewska A; Stodolak B; Dulinski R; Mickowska B
    Food Sci Technol Int; 2012 Apr; 18(2):113-22. PubMed ID: 22414936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology.
    Berikten D; Kivanc M
    Prep Biochem Biotechnol; 2014; 44(8):834-48. PubMed ID: 24279930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.
    Starzyńska-Janiszewska A; Stodolak B; Wikiera A
    Acta Sci Pol Technol Aliment; 2015; 14(2):125-132. PubMed ID: 28068010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed.
    Kumar P; Chamoli S; Agrawal S
    Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-state fermentation of phytase from cassava dregs.
    Hong K; Ma Y; Li M
    Appl Biochem Biotechnol; 2001; 91-93():777-85. PubMed ID: 11963905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98.
    Veerabhadrappa MB; Shivakumar SB; Devappa S
    J Biosci Bioeng; 2014 Feb; 117(2):208-214. PubMed ID: 23958640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate.
    Anto H; Trivedi UB; Patel KC
    Bioresour Technol; 2006 Jul; 97(10):1161-6. PubMed ID: 16006122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus.
    Mukherjee G; Banerjee R
    J Basic Microbiol; 2004; 44(1):42-8. PubMed ID: 14768027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1431-6. PubMed ID: 25732541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum.
    Ullah AH
    Prep Biochem; 1988; 18(4):443-58. PubMed ID: 2852806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of alpha-amylase by Aspergillus oryzae in solid-state fermentation.
    Francis F; Sabu A; Nampoothiri KM; Szakacs G; Pandey A
    J Basic Microbiol; 2002; 42(5):320-6. PubMed ID: 12362403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of airflow intensity on phytase production by solid-state fermentation.
    Rodríguez-Fernández DE; Rodríguez-León JA; de Carvalho JC; Karp SG; Sturm W; Parada JL; Soccol CR
    Bioresour Technol; 2012 Aug; 118():603-6. PubMed ID: 22704830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lichtheimia blakesleeana as a new potencial producer of phytase and xylanase.
    Neves ML; da Silva MF; Souza-Motta CM; Spier MR; Soccol CR; Porto TS; Moreira KA; Porto AL
    Molecules; 2011 Jun; 16(6):4807-17. PubMed ID: 21659966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.