These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 120951)
21. The voltage-sensitivity of Na-Ca exchange in the squid axon. Baker PF; Allen TJ Prog Clin Biol Res; 1984; 168():89-94. PubMed ID: 6514749 [No Abstract] [Full Text] [Related]
22. Calcium measurement in the periphery of an axon. Mullins LJ; Requena J J Gen Physiol; 1979 Sep; 74(3):393-413. PubMed ID: 479828 [TBL] [Abstract][Full Text] [Related]
23. The effect of cyanide on the efflux of calcium from squid axons. Blaustein MP; Hodgkin AL J Physiol; 1969 Feb; 200(2):497-527. PubMed ID: 5764408 [TBL] [Abstract][Full Text] [Related]
24. In squid axons intracellular Mg2+ is essential for ATP-dependent Na+ efflux in the absence and presence of strophanthidin. Beaugé L; Rojas H; DiPolo R Biochim Biophys Acta; 1983 Mar; 728(3):463-6. PubMed ID: 6402014 [TBL] [Abstract][Full Text] [Related]
25. The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Blaustein MP Fed Proc; 1976 Dec; 35(14):2574-8. PubMed ID: 992108 [TBL] [Abstract][Full Text] [Related]
26. Calcium movements in brain slices in low sodium or calcium media. Stahl WL; Swanson PD J Neurochem; 1972 Oct; 19(10):2395-407. PubMed ID: 4658796 [No Abstract] [Full Text] [Related]
27. A nerve cytosolic factor is required for MgATP stimulation of a Na+ gradient-dependent Ca2+ uptake in plasma membrane vesicles from squid optic nerve. Beaugé L; Delgado D; Rojas H; Berberián G; DiPolo R Ann N Y Acad Sci; 1996 Apr; 779():208-16. PubMed ID: 8659829 [No Abstract] [Full Text] [Related]
28. Sensitivity of calcium efflux from squid axons to changes in membrane potential. Mullins LJ; Brinley FJ J Gen Physiol; 1975 Feb; 65(2):135-52. PubMed ID: 1117279 [TBL] [Abstract][Full Text] [Related]
29. Physiological role of ATP-driven calcium pump in squid axon. DiPolo R; Beaugé L Nature; 1979 Mar; 278(5701):271-3. PubMed ID: 423979 [No Abstract] [Full Text] [Related]
30. The influence of nucleotides on calcium fluxes. Dipolo R Fed Proc; 1976 Dec; 35(14):2579-82. PubMed ID: 992109 [TBL] [Abstract][Full Text] [Related]
31. A model of the activation process of Na+ conductance in the squid axon: an approach with interactive desorption kinetics of divalent cations. Goto H J Theor Biol; 1975 Sep; 53(2):309-25. PubMed ID: 1195765 [No Abstract] [Full Text] [Related]
32. Effect of ATP on the calcium efflux in dialyzed squid giant axons. Dipolo R J Gen Physiol; 1974 Oct; 64(4):503-17. PubMed ID: 4418552 [TBL] [Abstract][Full Text] [Related]
33. Active control of intracellular pH. Boron WF Respir Physiol; 1978 Apr; 33(1):59-62. PubMed ID: 27855 [TBL] [Abstract][Full Text] [Related]
34. A study of the effects of externally applied sodium-ions and detection of spatial non-uniformity of the squid axon membrane under internal perfusion. Inoue I; Tasaki I; Kobatake Y Biophys Chem; 1974 Aug; 2(2):116-26. PubMed ID: 4433678 [No Abstract] [Full Text] [Related]
37. The influence of extracellular calcium binding on the calcium efflux from squid axons. Baker PF; McNaughton PA J Physiol; 1978 Mar; 276():127-50. PubMed ID: 418168 [TBL] [Abstract][Full Text] [Related]
38. An ATP-dependent Na+/Mg2+ countertransport is the only mechanism for Mg extrusion in squid axons. DiPolo R; Beaugé L Biochim Biophys Acta; 1988 Dec; 946(2):424-8. PubMed ID: 3207756 [TBL] [Abstract][Full Text] [Related]
39. Strategies for the selective measurement of calcium in various regions of an axon. Mullins LJ Soc Gen Physiol Ser; 1986; 40():239-54. PubMed ID: 2424096 [No Abstract] [Full Text] [Related]
40. Rapid pressure changes and surface displacements in the squid giant axon associated with production of action potentials. Tasaki I; Iwasa K Jpn J Physiol; 1982; 32(1):69-81. PubMed ID: 6281506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]