BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12095120)

  • 1. Elongation behavior of calcaneofibular and cervical ligaments in a closed kinetic chain: pathomechanics of lateral hindfoot instability.
    Martin LP; Wayne JS; Owen JR; Smith RT; Martin SN; Adelaar RS
    Foot Ankle Int; 2002 Jun; 23(6):515-20. PubMed ID: 12095120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Quantification of Stabilizing Effects of Subtalar Joint Soft-Tissue Constraints in a Novel Cadaveric Model.
    Pellegrini MJ; Glisson RR; Wurm M; Ousema PH; Romash MM; Nunley JA; Easley ME
    J Bone Joint Surg Am; 2016 May; 98(10):842-8. PubMed ID: 27194494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. J. Leonard Goldner Award 2010. Ligament balancing for total ankle arthroplasty: an in vitro evaluation of the elongation of the hind- and midfoot ligaments.
    Merian M; Glisson RR; Nunley JA
    Foot Ankle Int; 2011 May; 32(5):S457-72. PubMed ID: 21733454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability.
    Choisne J; Hoch MC; Bawab S; Alexander I; Ringleb SI
    J Orthop Res; 2013 Dec; 31(12):1869-75. PubMed ID: 24038108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement - an in vitro study.
    Li L; Gollhofer A; Lohrer H; Dorn-Lange N; Bonsignore G; Gehring D
    J Foot Ankle Res; 2019; 12():16. PubMed ID: 30923576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated lateral ankle ligamentous injury. Change in ankle stability.
    Hollis JM; Blasier RD; Flahiff CM
    Am J Sports Med; 1995; 23(6):672-7. PubMed ID: 8600732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligament force and joint motion in the intact ankle: a cadaveric study.
    Bahr R; Pena F; Shine J; Lew WD; Engebretsen L
    Knee Surg Sports Traumatol Arthrosc; 1998; 6(2):115-21. PubMed ID: 9604197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of modified Broström and Evans procedures in simulated lateral ankle injury.
    Fujii T; Kitaoka HB; Watanabe K; Luo ZP; An KN
    Med Sci Sports Exerc; 2006 Jun; 38(6):1025-31. PubMed ID: 16775540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Direct Ligament Repair and Tenodesis Reconstruction on Simulated Subtalar Joint Instability.
    Choisne J; Hoch MC; Alexander I; Ringleb SI
    Foot Ankle Int; 2017 Mar; 38(3):324-330. PubMed ID: 27923217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation behavior of calcaneofibular and cervical ligaments during inversion loads applied in an open kinetic chain.
    Martin LP; Wayne JS; Monahan TJ; Adelaar RS
    Foot Ankle Int; 1998 Apr; 19(4):232-9. PubMed ID: 9578103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subtalar instability: a biomechanical cadaver study.
    Weindel S; Schmidt R; Rammelt S; Claes L; v Campe A; Rein S
    Arch Orthop Trauma Surg; 2010 Mar; 130(3):313-9. PubMed ID: 18839193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lateral ligament sectioning on the stability of the ankle and subtalar joint.
    Ringleb SI; Dhakal A; Anderson CD; Bawab S; Paranjape R
    J Orthop Res; 2011 Oct; 29(10):1459-64. PubMed ID: 21445995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of simulated joint instability and bracing on ankle and subtalar joint flexibility.
    Choisne J; McNally A; Hoch MC; Ringleb SI
    J Biomech; 2019 Jan; 82():234-243. PubMed ID: 30442430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of ankle-hindfoot stability in multiple planes: an in vitro study.
    Fujii T; Kitaoka HB; Luo ZP; Kura H; An KN
    Foot Ankle Int; 2005 Aug; 26(8):633-7. PubMed ID: 16115421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading.
    Parenteau CS; Viano DC; Petit PY
    J Biomech Eng; 1998 Feb; 120(1):105-11. PubMed ID: 9675688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle laxity: stress investigation under MRI control.
    Seebauer CJ; Bail HJ; Rump JC; Hamm B; Walter T; Teichgräber UK
    AJR Am J Roentgenol; 2013 Sep; 201(3):496-504. PubMed ID: 23971441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of ankle injury on subtalar motion.
    Michelson J; Hamel A; Buczek F; Sharkey N
    Foot Ankle Int; 2004 Sep; 25(9):639-46. PubMed ID: 15563386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle ligament tensile forces at the end points of passive circumferential rotating motion of the ankle and subtalar joint complex.
    Ozeki S; Kitaoka H; Uchiyama E; Luo ZP; Kaufman K; An KN
    Foot Ankle Int; 2006 Nov; 27(11):965-9. PubMed ID: 17144961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of the anterior talofibular ligament to ankle laxity.
    Johnson EE; Markolf KL
    J Bone Joint Surg Am; 1983 Jan; 65(1):81-8. PubMed ID: 6848539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of reconstruction techniques in simulated lateral ankle ligament injury.
    Hollis JM; Blasier RD; Flahiff CM; Hofmann OE
    Am J Sports Med; 1995; 23(6):678-82. PubMed ID: 8600733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.