BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12095206)

  • 1. Photon path distribution in inhomogeneous turbid media: theoretical analysis and a method of calculation.
    Tsuchiya Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jul; 19(7):1383-9. PubMed ID: 12095206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law.
    Tsuchiya Y
    Phys Med Biol; 2001 Aug; 46(8):2067-84. PubMed ID: 11512611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical computed tomography in a turbid medium using early arriving photons.
    Chen K; Perelman LT; Zhang Q; Dasari RR; Feld MS
    J Biomed Opt; 2000 Apr; 5(2):144-54. PubMed ID: 10938778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon migration in turbid media with anisotropic optical properties.
    Dudko OK; Weiss GH; Chernomordik V; Gandjbakhche AH
    Phys Med Biol; 2004 Sep; 49(17):3979-89. PubMed ID: 15470918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model for photon migration in turbid biological media.
    Bonner RF; Nossal R; Havlin S; Weiss GH
    J Opt Soc Am A; 1987 Mar; 4(3):423-32. PubMed ID: 3572576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.
    Spirou GM; Mandelis A; Vitkin IA; Whelan WM
    Appl Opt; 2008 May; 47(14):2564-73. PubMed ID: 18470251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L; Wang Q; Zhang Q; Jiang H
    Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons.
    Liebert A; Wabnitz H; Grosenick D; Möller M; Macdonald R; Rinneberg H
    Appl Opt; 2003 Oct; 42(28):5785-92. PubMed ID: 14528944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium.
    Chernomordik V; Hattery DW; Gannot I; Zaccanti G; Gandjbakhche A
    J Biomed Opt; 2002 Jul; 7(3):486-92. PubMed ID: 12175301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green functions for diffuse photon-density waves generated by a line source in two nonabsorbing turbid media in contact.
    Shendeleva ML
    Appl Opt; 2004 Mar; 43(8):1638-42. PubMed ID: 15046165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive calibration for object localization in turbid media with interfering diffuse photon density waves.
    Chen Y; Mu C; Intes X; Chance B
    Appl Opt; 2002 Dec; 41(34):7325-33. PubMed ID: 12477125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light.
    Hussain A; Daoudi K; Hondebrink E; Steenbergen W
    J Biomed Opt; 2014 Jun; 19(6):066002. PubMed ID: 24887744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical solution of inverse scattering for near-field optics.
    Bao G; Li P
    Opt Lett; 2007 Jun; 32(11):1465-7. PubMed ID: 17546156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M; Zerafa S; Vishwanath K; Mycek MA
    Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media.
    Xu M; Cai W; Alfano RR
    Opt Lett; 2004 Aug; 29(15):1757-9. PubMed ID: 15354296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M; Nilsson H; Strömberg T
    Appl Opt; 2003 Jan; 42(1):124-34. PubMed ID: 12518831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.