These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 12095422)
1. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. Mutch DM; Berger A; Mansourian R; Rytz A; Roberts MA BMC Bioinformatics; 2002 Jun; 3():17. PubMed ID: 12095422 [TBL] [Abstract][Full Text] [Related]
2. Microarray data analysis: a practical approach for selecting differentially expressed genes. Mutch DM; Berger A; Mansourian R; Rytz A; Roberts MA Genome Biol; 2001; 2(12):PREPRINT0009. PubMed ID: 11790248 [TBL] [Abstract][Full Text] [Related]
3. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data. Mansourian R; Mutch DM; Antille N; Aubert J; Fogel P; Le Goff JM; Moulin J; Petrov A; Rytz A; Voegel JJ; Roberts MA Bioinformatics; 2004 Nov; 20(16):2726-37. PubMed ID: 15145801 [TBL] [Abstract][Full Text] [Related]
4. Sample size for detecting differentially expressed genes in microarray experiments. Wei C; Li J; Bumgarner RE BMC Genomics; 2004 Nov; 5():87. PubMed ID: 15533245 [TBL] [Abstract][Full Text] [Related]
5. The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. Shi L; Jones WD; Jensen RV; Harris SC; Perkins RG; Goodsaid FM; Guo L; Croner LJ; Boysen C; Fang H; Qian F; Amur S; Bao W; Barbacioru CC; Bertholet V; Cao XM; Chu TM; Collins PJ; Fan XH; Frueh FW; Fuscoe JC; Guo X; Han J; Herman D; Hong H; Kawasaki ES; Li QZ; Luo Y; Ma Y; Mei N; Peterson RL; Puri RK; Shippy R; Su Z; Sun YA; Sun H; Thorn B; Turpaz Y; Wang C; Wang SJ; Warrington JA; Willey JC; Wu J; Xie Q; Zhang L; Zhang L; Zhong S; Wolfinger RD; Tong W BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S10. PubMed ID: 18793455 [TBL] [Abstract][Full Text] [Related]
6. Preparation of archival formalin-fixed paraffin-embedded mouse liver samples for use with the Agilent gene expression microarray platform. Jackson AF; Williams A; Moffat I; Phillips SL; Recio L; Waters MD; Lambert IB; Yauk CL J Pharmacol Toxicol Methods; 2013; 68(2):260-268. PubMed ID: 23458726 [TBL] [Abstract][Full Text] [Related]
7. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. Wang Y; Barbacioru C; Hyland F; Xiao W; Hunkapiller KL; Blake J; Chan F; Gonzalez C; Zhang L; Samaha RR BMC Genomics; 2006 Mar; 7():59. PubMed ID: 16551369 [TBL] [Abstract][Full Text] [Related]
8. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394 [TBL] [Abstract][Full Text] [Related]
9. Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data. Abruzzo LV; Lee KY; Fuller A; Silverman A; Keating MJ; Medeiros LJ; Coombes KR Biotechniques; 2005 May; 38(5):785-92. PubMed ID: 15945375 [TBL] [Abstract][Full Text] [Related]
11. Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. Hu R; Qiu X; Glazko G; Klebanov L; Yakovlev A BMC Bioinformatics; 2009 Jan; 10():20. PubMed ID: 19146700 [TBL] [Abstract][Full Text] [Related]
12. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. Qin LX; Beyer RP; Hudson FN; Linford NJ; Morris DE; Kerr KF BMC Bioinformatics; 2006 Jan; 7():23. PubMed ID: 16417622 [TBL] [Abstract][Full Text] [Related]
14. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays. Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405 [TBL] [Abstract][Full Text] [Related]
15. Statistical analysis of differential gene expression relative to a fold change threshold on NanoString data of mouse odorant receptor genes. Vaes E; Khan M; Mombaerts P BMC Bioinformatics; 2014 Feb; 15():39. PubMed ID: 24495268 [TBL] [Abstract][Full Text] [Related]
16. Long versus short oligonucleotide microarrays for the study of gene expression in nonhuman primates. Walker SJ; Wang Y; Grant KA; Chan F; Hellmann GM J Neurosci Methods; 2006 Apr; 152(1-2):179-89. PubMed ID: 16253343 [TBL] [Abstract][Full Text] [Related]
17. Fold change rank ordering statistics: a new method for detecting differentially expressed genes. Dembélé D; Kastner P BMC Bioinformatics; 2014 Jan; 15():14. PubMed ID: 24423217 [TBL] [Abstract][Full Text] [Related]
18. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR -- how well do they correlate? Dallas PB; Gottardo NG; Firth MJ; Beesley AH; Hoffmann K; Terry PA; Freitas JR; Boag JM; Cummings AJ; Kees UR BMC Genomics; 2005 Apr; 6():59. PubMed ID: 15854232 [TBL] [Abstract][Full Text] [Related]
19. Cross-platform microarray meta-analysis for the mouse jejunum selects novel reference genes with highly uniform levels of expression. Meyer FR; Grausgruber H; Binter C; Mair GE; Guelly C; Vogl C; Steinborn R PLoS One; 2013; 8(5):e63125. PubMed ID: 23671661 [TBL] [Abstract][Full Text] [Related]
20. Dynamism in gene expression across multiple studies. Morgan AA; Dudley JT; Deshpande T; Butte AJ Physiol Genomics; 2010 Feb; 40(3):128-40. PubMed ID: 19920211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]