These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12095870)
1. Wetness of the nest environment influences cardiac development in pre- and post-natal snapping turtles (Chelydra serpentina). Packard GC; Packard MJ Comp Biochem Physiol A Mol Integr Physiol; 2002 Aug; 132(4):905-12. PubMed ID: 12095870 [TBL] [Abstract][Full Text] [Related]
2. Availability of water affects organ growth in prenatal and neonatal snapping turtles (Chelydra serpentina). Packard GC; Packard MJ; Birchard GF J Comp Physiol B; 2000 Feb; 170(1):69-74. PubMed ID: 10707327 [TBL] [Abstract][Full Text] [Related]
3. Influence of water availability during incubation on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle Chelydra serpentina. Finkler MS Physiol Biochem Zool; 1999; 72(6):714-22. PubMed ID: 10603335 [TBL] [Abstract][Full Text] [Related]
4. Control of metabolism and growth in embryonic turtles: a test of the urea hypothesis. Packard GC; Packard MJ J Exp Biol; 1989 Nov; 147():203-16. PubMed ID: 2614338 [TBL] [Abstract][Full Text] [Related]
5. Cardiovascular responses to putative chemoreceptor stimulation of embryonic common snapping turtles (Chelydra serpentina) chronically incubated in hypoxia (10% O Eme J; Tate KB; Rhen T; Crossley DA Comp Biochem Physiol A Mol Integr Physiol; 2021 Sep; 259():110977. PubMed ID: 33984502 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development. Wearing OH; Eme J; Rhen T; Crossley DA Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(2):R176-84. PubMed ID: 26608655 [TBL] [Abstract][Full Text] [Related]
7. Environmentally induced variation in body size of turtles hatching in natural nests. Packard GC; Miller K; Packard MJ Oecologia; 1993 Mar; 93(3):445-448. PubMed ID: 28313447 [TBL] [Abstract][Full Text] [Related]
8. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. O'Steen S J Exp Biol; 1998 Feb; 201(Pt 3):439-49. PubMed ID: 9503646 [TBL] [Abstract][Full Text] [Related]
9. Comparative effects of in ovo exposure to sodium perchlorate on development, growth, metabolism, and thyroid function in the common snapping turtle (Chelydra serpentina) and red-eared slider (Trachemys scripta elegans). Eisenreich KM; Dean KM; Ottinger MA; Rowe CL Comp Biochem Physiol C Toxicol Pharmacol; 2012 Nov; 156(3-4):166-70. PubMed ID: 22871607 [TBL] [Abstract][Full Text] [Related]
10. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings. Van Meter RJ; Spotila JR; Avery HW Environ Pollut; 2006 Aug; 142(3):466-75. PubMed ID: 16360251 [TBL] [Abstract][Full Text] [Related]
11. Does the hydric environment affect the incubation of small rigid-shelled turtle eggs? Zhao B; Chen Y; Wang Y; Ding P; Du WG Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):66-70. PubMed ID: 23026024 [TBL] [Abstract][Full Text] [Related]
12. Heart rate during development in the turtle embryo: effect of temperature. Birchard GF; Reiber CL J Comp Physiol B; 1996; 166(8):461-6. PubMed ID: 8981759 [TBL] [Abstract][Full Text] [Related]
13. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles ( Wearing OH; Conner J; Nelson D; Crossley J; Crossley DA J Exp Biol; 2017 Jul; 220(Pt 14):2589-2597. PubMed ID: 28495871 [TBL] [Abstract][Full Text] [Related]
14. Influence of the nest environment on bone mineral content in hatchling painted turtles (Chrysemys picta). Sternadel LL; Packard GC; Packard MJ Physiol Biochem Zool; 2006; 79(6):1069-81. PubMed ID: 17041872 [TBL] [Abstract][Full Text] [Related]
15. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos. Tate KB; Kohl ZF; Eme J; Rhen T; Crossley DA Physiol Biochem Zool; 2015; 88(2):103-15. PubMed ID: 25730266 [TBL] [Abstract][Full Text] [Related]
16. Embryonic temperature affects metabolic compensation and thyroid hormones in hatchling snapping turtles. O'Steen S; Janzen FJ Physiol Biochem Zool; 1999; 72(5):520-33. PubMed ID: 10521320 [TBL] [Abstract][Full Text] [Related]
17. Environmental contamination and developmental abnormalities in eggs and hatchlings of the common snapping turtle (Chelydra serpentina serpentina) from the Great Lakes-St Lawrence River basin (1989-1991). Bishop CA; Ng P; Pettit KE; Kennedy SW; Stegeman JJ; Norstrom RJ; Brooks RJ Environ Pollut; 1998; 101(1):143-56. PubMed ID: 15093107 [TBL] [Abstract][Full Text] [Related]
18. Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina. Filogonio R; Dubansky BD; Dubansky BH; Leite CAC; Crossley DA Comp Biochem Physiol A Mol Integr Physiol; 2021 Oct; 260():111023. PubMed ID: 34224856 [TBL] [Abstract][Full Text] [Related]
19. Lipid provisioning of turtle eggs and hatchlings: total lipid, phospholipid, triacylglycerol and triacylglycerol fatty acids. Rowe JW; Holy L; Ballinger RE; Stanley-Samuelson D Comp Biochem Physiol B Biochem Mol Biol; 1995 Oct; 112(2):323-30. PubMed ID: 7584861 [TBL] [Abstract][Full Text] [Related]
20. The relationship of body size to survivorship of hatchling snapping turtles (Chelydra serpentina): an evaluation of the "bigger is better" hypothesis. Congdon JD; Nagle RD; Dunham AE; Beck CW; Kinney OM; Yeomans SR Oecologia; 1999 Nov; 121(2):224-235. PubMed ID: 28308562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]