BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12095998)

  • 1. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen.
    Waters BM; Eide DJ
    J Biol Chem; 2002 Sep; 277(37):33749-57. PubMed ID: 12095998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of the Low Affinity Iron Transporter Gene FET4: A NOVEL MECHANISM AGAINST CADMIUM TOXICITY ORCHESTRATED BY YAP1 VIA ROX1.
    Caetano SM; Menezes R; Amaral C; Rodrigues-Pousada C; Pimentel C
    J Biol Chem; 2015 Jul; 290(30):18584-95. PubMed ID: 26063801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron.
    Dix D; Bridgham J; Broderius M; Eide D
    J Biol Chem; 1997 May; 272(18):11770-7. PubMed ID: 9115232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil.
    Cohen CK; Garvin DF; Kochian LV
    Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2.
    Bird AJ; Blankman E; Stillman DJ; Eide DJ; Winge DR
    EMBO J; 2004 Mar; 23(5):1123-32. PubMed ID: 14976557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
    Hassett R; Dix DR; Eide DJ; Kosman DJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):477-84. PubMed ID: 11023834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae.
    Frey AG; Eide DJ
    J Biol Chem; 2011 Feb; 286(8):6844-54. PubMed ID: 21177862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of high affinity iron uptake in the yeast Saccharomyces cerevisiae. Role of dioxygen and Fe.
    Hassett RF; Romeo AM; Kosman DJ
    J Biol Chem; 1998 Mar; 273(13):7628-36. PubMed ID: 9516467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae.
    Dix DR; Bridgham JT; Broderius MA; Byersdorfer CA; Eide DJ
    J Biol Chem; 1994 Oct; 269(42):26092-9. PubMed ID: 7929320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1.
    Courel M; Lallet S; Camadro JM; Blaiseau PL
    Mol Cell Biol; 2005 Aug; 25(15):6760-71. PubMed ID: 16024809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes.
    Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G
    Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular biology of iron acquisition in Saccharomyces cerevisiae.
    Askwith CC; de Silva D; Kaplan J
    Mol Microbiol; 1996 Apr; 20(1):27-34. PubMed ID: 8861201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.
    Milner MJ; Pence NS; Liu J; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):271-80. PubMed ID: 24433538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment.
    Serrano R; Bernal D; Simón E; Ariño J
    J Biol Chem; 2004 May; 279(19):19698-704. PubMed ID: 14993228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of Schizosaccharomyces pombe to zinc deficiency.
    Dainty SJ; Kennedy CA; Watt S; Bähler J; Whitehall SK
    Eukaryot Cell; 2008 Mar; 7(3):454-64. PubMed ID: 18203864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretory pathway.
    Wu YH; Frey AG; Eide DJ
    Biochem J; 2011 Apr; 435(1):259-66. PubMed ID: 21250939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.