BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12096054)

  • 21. Activity-dependent patterning of retinogeniculate axons proceeds with a constant contribution from AMPA and NMDA receptors.
    Hohnke CD; Oray S; Sur M
    J Neurosci; 2000 Nov; 20(21):8051-60. PubMed ID: 11050126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creation of AMPA-silent synapses in the neonatal hippocampus.
    Xiao MY; Wasling P; Hanse E; Gustafsson B
    Nat Neurosci; 2004 Mar; 7(3):236-43. PubMed ID: 14966524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinal activity regulates developmental switches in functional properties and ifenprodil sensitivity of NMDA receptors in the lateral geniculate nucleus.
    Ramoa AS; Prusky G
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):165-75. PubMed ID: 9263590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms underlying presynaptic facilitatory effect of cyclothiazide at the calyx of Held of juvenile rats.
    Ishikawa T; Takahashi T
    J Physiol; 2001 Jun; 533(Pt 2):423-31. PubMed ID: 11389202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development.
    Zhang L; Bose P; Warren RA
    PLoS One; 2014; 9(5):e86970. PubMed ID: 24784836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus.
    Pandis C; Sotiriou E; Kouvaras E; Asprodini E; Papatheodoropoulos C; Angelatou F
    Neuroscience; 2006 Jun; 140(1):163-75. PubMed ID: 16542781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-evoked excitatory synaptic currents of X-type retinal ganglion cells.
    Cohen ED
    J Neurophysiol; 2000 Jun; 83(6):3217-29. PubMed ID: 10848542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential response dynamics of corticothalamic glutamatergic synapses in the lateral geniculate nucleus and thalamic reticular nucleus.
    Alexander GM; Fisher TL; Godwin DW
    Neuroscience; 2006; 137(2):367-72. PubMed ID: 16360282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two classes of excitatory synaptic responses in rat thalamic reticular neurons.
    Deleuze C; Huguenard JR
    J Neurophysiol; 2016 Sep; 116(3):995-1011. PubMed ID: 27281752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of glutamatergic transmission by presynaptic N-methyl-D-aspartate mechanisms in second-order neurons of the rat nucleus tractus solitarius.
    Ohi Y; Kimura S; Haji A
    Neurosci Lett; 2015 Feb; 587():62-7. PubMed ID: 25528404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus.
    Panatier A; Gentles SJ; Bourque CW; Oliet SH
    J Physiol; 2006 Jun; 573(Pt 3):711-21. PubMed ID: 16613872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitatory postsynaptic currents and glutamate receptors in neonatal rat sympathetic preganglionic neurons in vitro.
    Krupp J; Feltz P
    J Neurophysiol; 1995 Apr; 73(4):1503-12. PubMed ID: 7543945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus.
    von Krosigk M; Monckton JE; Reiner PB; McCormick DA
    Neuroscience; 1999; 91(1):7-20. PubMed ID: 10336055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus.
    Lee CY; Fu WM; Chen CC; Su MJ; Liou HH
    Epilepsia; 2008 May; 49(5):888-97. PubMed ID: 18248444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex.
    Angulo MC; Rossier J; Audinat E
    J Neurophysiol; 1999 Sep; 82(3):1295-302. PubMed ID: 10482748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LY404187, a potentiator of AMPARs, enhances both the amplitude and 1/CV2 of AMPA EPSCs but not NMDA EPSCs at CA3-CA1 synapses in the hippocampus of neonatal rats.
    Song B; Lee S; Choi S
    Neurosci Lett; 2012 Dec; 531(2):193-7. PubMed ID: 23103715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses.
    Xu-Friedman MA; Regehr WG
    J Neurosci; 2003 Mar; 23(6):2182-92. PubMed ID: 12657677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex.
    Kumar SS; Huguenard JR
    J Neurophysiol; 2001 Dec; 86(6):2973-85. PubMed ID: 11731554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus.
    Costa L; Santangelo F; Li Volsi G; Ciranna L
    Hippocampus; 2009 Jan; 19(1):99-109. PubMed ID: 18727050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Somatosensory corticothalamic projections: distinguishing drivers from modulators.
    Reichova I; Sherman SM
    J Neurophysiol; 2004 Oct; 92(4):2185-97. PubMed ID: 15140908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.