These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12096113)
1. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. MacDonald JA; Mackey AJ; Pearson WR; Haystead TA Mol Cell Proteomics; 2002 Apr; 1(4):314-22. PubMed ID: 12096113 [TBL] [Abstract][Full Text] [Related]
3. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Jaffe H; Veeranna ; Pant HC Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213 [TBL] [Abstract][Full Text] [Related]
4. A manual sequencing method for identification of phosphorylated amino acids in phosphopeptides. Sullivan S; Wong TW Anal Biochem; 1991 Aug; 197(1):65-8. PubMed ID: 1952076 [TBL] [Abstract][Full Text] [Related]
5. Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase. McMichael RW; Klein RR; Salvucci ME; Huber SC Arch Biochem Biophys; 1993 Dec; 307(2):248-52. PubMed ID: 8274010 [TBL] [Abstract][Full Text] [Related]
6. Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry. Doucet A; Overall CM Methods Enzymol; 2011; 501():275-93. PubMed ID: 22078539 [TBL] [Abstract][Full Text] [Related]
7. 1,25-dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation. Hilliard GM; Cook RG; Weigel NL; Pike JW Biochemistry; 1994 Apr; 33(14):4300-11. PubMed ID: 8155647 [TBL] [Abstract][Full Text] [Related]
8. Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Lehr S; Kotzka J; Herkner A; Sikmann A; Meyer HE; Krone W; Müller-Wieland D Biochemistry; 2000 Sep; 39(35):10898-907. PubMed ID: 10978177 [TBL] [Abstract][Full Text] [Related]
9. Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. Wilkins MR; Ou K; Appel RD; Sanchez JC; Yan JX; Golaz O; Farnsworth V; Cartier P; Hochstrasser DF; Williams KL; Gooley AA Biochem Biophys Res Commun; 1996 Apr; 221(3):609-13. PubMed ID: 8630008 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of proteins and peptides. Deutzmann R Methods Mol Med; 2004; 94():269-97. PubMed ID: 14959836 [TBL] [Abstract][Full Text] [Related]
11. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. Shirafuji Y; Tanabe H; Satchell DP; Henschen-Edman A; Wilson CL; Ouellette AJ J Biol Chem; 2003 Mar; 278(10):7910-9. PubMed ID: 12482850 [TBL] [Abstract][Full Text] [Related]
12. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Oda Y; Nagasu T; Chait BT Nat Biotechnol; 2001 Apr; 19(4):379-82. PubMed ID: 11283599 [TBL] [Abstract][Full Text] [Related]
13. In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: identification of phosphorylation sites and c-src SH2 domain binding sites. Lombardo CR; Consler TG; Kassel DB Biochemistry; 1995 Dec; 34(50):16456-66. PubMed ID: 8845374 [TBL] [Abstract][Full Text] [Related]
14. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. Sihag RK; Nixon RA J Biol Chem; 1991 Oct; 266(28):18861-7. PubMed ID: 1717455 [TBL] [Abstract][Full Text] [Related]
15. Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin. Delwel GO; Kuikman I; van der Schors RC; de Melker AA; Sonnenberg A Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):263-72. PubMed ID: 9164866 [TBL] [Abstract][Full Text] [Related]
16. Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing. Campbell DG; Morrice NA J Biomol Tech; 2002 Sep; 13(3):119-30. PubMed ID: 19498976 [TBL] [Abstract][Full Text] [Related]
17. Identification of phosphorylation sites in peptides using a gas-phase sequencer. Wang YH; Fiol CJ; DePaoli-Roach AA; Bell AW; Hermodson MA; Roach PJ Anal Biochem; 1988 Nov; 174(2):537-47. PubMed ID: 3239755 [TBL] [Abstract][Full Text] [Related]
18. A systematic approach to the analysis of protein phosphorylation. Zhou H; Watts JD; Aebersold R Nat Biotechnol; 2001 Apr; 19(4):375-8. PubMed ID: 11283598 [TBL] [Abstract][Full Text] [Related]
19. Mixture-based peptide libraries for identifying protease cleavage motifs. Turk BE Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969 [TBL] [Abstract][Full Text] [Related]
20. PhosphoBase: a database of phosphorylation sites. Blom N; Kreegipuu A; Brunak S Nucleic Acids Res; 1998 Jan; 26(1):382-6. PubMed ID: 9399879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]