BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12096141)

  • 1. Chemical approaches for functionally probing the proteome.
    Greenbaum D; Baruch A; Hayrapetian L; Darula Z; Burlingame A; Medzihradszky KF; Bogyo M
    Mol Cell Proteomics; 2002 Jan; 1(1):60-8. PubMed ID: 12096141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Fishing" for the functional proteome.
    Gerlt JA
    Nat Biotechnol; 2002 Aug; 20(8):786-7. PubMed ID: 12148003
    [No Abstract]   [Full Text] [Related]  

  • 3. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes.
    Patricelli MP; Giang DK; Stamp LM; Burbaum JJ
    Proteomics; 2001 Sep; 1(9):1067-71. PubMed ID: 11990500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype.
    Adam GC; Sorensen EJ; Cravatt BF
    Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective and diagnostic labelling of serine hydrolases with reactive phosphonate inhibitors.
    Dijkstra HP; Sprong H; Aerts BN; Kruithof CA; Egmond MR; Klein Gebbink RJ
    Org Biomol Chem; 2008 Feb; 6(3):523-31. PubMed ID: 18219423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast.
    Baxter SM; Rosenblum JS; Knutson S; Nelson MR; Montimurro JS; Di Gennaro JA; Speir JA; Burbaum JJ; Fetrow JS
    Mol Cell Proteomics; 2004 Mar; 3(3):209-25. PubMed ID: 14645503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools.
    Greenbaum D; Medzihradszky KF; Burlingame A; Bogyo M
    Chem Biol; 2000 Aug; 7(8):569-81. PubMed ID: 11048948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional profiling of the proteome with affinity labels.
    Campbell DA; Szardenings AK
    Curr Opin Chem Biol; 2003 Apr; 7(2):296-303. PubMed ID: 12714064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Protein Targets of Bioactive Small Molecules Using Randomly Photomodified Probes.
    Šimon P; Knedlík T; Blažková K; Dvořáková P; Březinová A; Kostka L; Šubr V; Konvalinka J; Šácha P
    ACS Chem Biol; 2018 Dec; 13(12):3333-3342. PubMed ID: 30489064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. gamma-Glutamyltranspeptidase and gamma-glutamyl peptide ligases: fluorophosphonate and phosphonodifluoromethyl ketone analogs as probes of tetrahedral transition state and gamma-glutamyl-phosphate intermediate.
    Hiratake J; Inoue M; Sakata K
    Methods Enzymol; 2002; 354():272-95. PubMed ID: 12418234
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional proteomic profiling of glycan-processing enzymes.
    Stubbs KA; Vocadlo DJ
    Methods Enzymol; 2006; 415():253-68. PubMed ID: 17116479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorogenic affinity label for the facile, rapid imaging of proteins in live cells.
    Watkins RW; Lavis LD; Kung VM; Los GV; Raines RT
    Org Biomol Chem; 2009 Oct; 7(19):3969-75. PubMed ID: 19763299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-based probes as a tool for functional proteomic analysis of proteases.
    Fonović M; Bogyo M
    Expert Rev Proteomics; 2008 Oct; 5(5):721-30. PubMed ID: 18937562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity based chemical proteomics: profiling proteases as drug targets.
    Heal WP; Wickramasinghe SR; Tate EW
    Curr Drug Discov Technol; 2008 Sep; 5(3):200-12. PubMed ID: 18690889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of matrix metalloproteinase active forms in complex proteomes: evaluation of affinity versus photoaffinity capture.
    Bregant S; Huillet C; Devel L; Dabert-Gay AS; Beau F; Thai R; Czarny B; Yiotakis A; Dive V
    J Proteome Res; 2009 May; 8(5):2484-94. PubMed ID: 19271733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Chromogenic and fluorogenic peptide substrates of proteolytic enzymes].
    Gershkovich AA; Kibirev VK
    Bioorg Khim; 1988 Nov; 14(11):1461-88. PubMed ID: 3071368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.