BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12096746)

  • 1. The development of potential screens based on shoot calcium and iron concentrations for the evaluation of tolerance in Egyptian genotypes of white lupin (Lupinus albus L.) to limed soils.
    Kerley SJ; Norgaard C; Leach JE; Christiansen JL; Huyghe C; Römer P
    Ann Bot; 2002 Mar; 89(3):341-9. PubMed ID: 12096746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.
    Pastor J; Hernández AJ; Prieto N; Fernández-Pascual M
    J Plant Physiol; 2003 Dec; 160(12):1457-65. PubMed ID: 14717438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.
    Hong CO; Lee DK; Chung DY; Kim PJ
    Arch Environ Contam Toxicol; 2007 May; 52(4):496-502. PubMed ID: 17253095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil CO
    Affholder MC; Weiss DJ; Wissuwa M; Johnson-Beebout SE; Kirk GJD
    Plant Cell Environ; 2017 Dec; 40(12):3018-3030. PubMed ID: 28898428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes.
    Inostroza-Blancheteau C; Reyes-Díaz M; Berríos G; Rodrigues-Salvador A; Nunes-Nesi A; Deppe M; Demanet R; Rengel Z; Alberdi M
    Plant Physiol Biochem; 2017 Apr; 113():89-97. PubMed ID: 28189921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.).
    Ruan J; Ma L; Shi Y; Han W
    Ann Bot; 2004 Jan; 93(1):97-105. PubMed ID: 14644914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of olive varieties for tolerance to iron chlorosis.
    Alcántara E; Cordeiro AM; Barranco D
    J Plant Physiol; 2003 Dec; 160(12):1467-72. PubMed ID: 14717439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.
    Zornoza P; Millán R; Sierra MJ; Seco A; Esteban E
    J Environ Sci (China); 2010; 22(3):421-7. PubMed ID: 20614785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils.
    Martínez-Alcalá I; Hernández LE; Esteban E; Walker DJ; Bernal MP
    Plant Physiol Biochem; 2013 May; 66():47-55. PubMed ID: 23466747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Lupinus albus L. root activities on As and Cu mobility after addition of iron-based soil amendments.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Moreno-Jiménez E
    Chemosphere; 2017 Sep; 182():373-381. PubMed ID: 28505579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Prohaska T; Moreno-Jiménez E
    Environ Pollut; 2016 Sep; 216():215-222. PubMed ID: 27263113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth performance and element concentrations reveal the calcicole-calcifuge behavior of three Adiantum species.
    Liao JX; Liang DY; Jiang QW; Mo L; Pu GZ; Zhang D
    BMC Plant Biol; 2020 Jul; 20(1):327. PubMed ID: 32650742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants.
    Zohlen A; Tyler G
    Ann Bot; 2004 Sep; 94(3):427-32. PubMed ID: 15277247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.
    Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE
    Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants.
    Singh RP; Agrawal M
    Chemosphere; 2007 May; 67(11):2229-40. PubMed ID: 17289111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes.
    Nielsen KL; Eshel A; Lynch JP
    J Exp Bot; 2001 Feb; 52(355):329-39. PubMed ID: 11283178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.