These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12096896)

  • 1. Single molecule imaging of supported planar lipid bilayer--reconstituted human insulin receptors by in situ scanning probe microscopy.
    Slade A; Luh J; Ho S; Yip CM
    J Struct Biol; 2002 Mar; 137(3):283-91. PubMed ID: 12096896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers.
    Shaw JE; Slade A; Yip CM
    J Am Chem Soc; 2003 Oct; 125(39):11838-9. PubMed ID: 14505404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ scanning probe microscopy studies of tetanus toxin-membrane interactions.
    Slade AL; Schoeniger JS; Sasaki DY; Yip CM
    Biophys J; 2006 Dec; 91(12):4565-74. PubMed ID: 16997879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis.
    Scapin G; Dandey VP; Zhang Z; Prosise W; Hruza A; Kelly T; Mayhood T; Strickland C; Potter CS; Carragher B
    Nature; 2018 Apr; 556(7699):122-125. PubMed ID: 29512653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy.
    Leonenko ZV; Carnini A; Cramb DT
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):131-47. PubMed ID: 11118525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of the detergent-solubilized and vesicle-reconstituted insulin receptor.
    Woldin CN; Hing FS; Lee J; Pilch PF; Shipley GG
    J Biol Chem; 1999 Dec; 274(49):34981-92. PubMed ID: 10574975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane topology of insulin receptors reconstituted into lipid vesicles.
    Tranum-Jensen J; Christiansen K; Carlsen J; Brenzel G; Vinten J
    J Membr Biol; 1994 Jun; 140(3):215-23. PubMed ID: 7932656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain growth, shapes, and topology in cationic lipid bilayers on mica by fluorescence and atomic force microscopy.
    McKiernan AE; Ratto TV; Longo ML
    Biophys J; 2000 Nov; 79(5):2605-15. PubMed ID: 11053133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking influenza virus fusion using supported lipid bilayers.
    Godefroy C; Dahmane S; Dosset P; Adam O; Nicolai MC; Ronzon F; Milhiet PE
    Langmuir; 2014 Sep; 30(38):11394-400. PubMed ID: 25186242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol.
    Saslowsky DE; Lawrence JC; Henderson RM; Edwardson JM
    J Membr Biol; 2003 Aug; 194(3):153-64. PubMed ID: 14502428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Lipid Vesicles Spreading and Bilayer Formation on a Au(111) Surface.
    Pawłowski J; Juhaniewicz J; Güzeloğlu A; Sęk S
    Langmuir; 2015 Oct; 31(40):11012-9. PubMed ID: 26010469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFM imaging of ligand binding to platelet integrin alphaIIbbeta3 receptors reconstituted into planar lipid bilayers.
    Hussain MA; Agnihotri A; Siedlecki CA
    Langmuir; 2005 Jul; 21(15):6979-86. PubMed ID: 16008412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscovite (mica) allows the characterisation of supported bilayers by ellipsometry and confocal fluorescence correlation spectroscopy.
    Benes M; Billy D; Hermens WT; Hof M
    Biol Chem; 2002 Feb; 383(2):337-41. PubMed ID: 11934273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure.
    Wlodek M; Kolasinska-Sojka M; Szuwarzynski M; Kereïche S; Kovacik L; Zhou L; Islas L; Warszynski P; Briscoe WH
    Nanoscale; 2018 Sep; 10(37):17965-17974. PubMed ID: 30226255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers.
    Morandat S; El Kirat K
    Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral electrical conductivity of mica-supported lipid bilayer membranes measured by scanning tunneling microscopy.
    Heim M; Cevc G; Guckenberger R; Knapp HF; Wiegräbe W
    Biophys J; 1995 Aug; 69(2):489-97. PubMed ID: 8527663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of insulin receptors with lipid bilayers and specific and nonspecific binding of insulin to supported membranes.
    Sui SF; Urumow T; Sackmann E
    Biochemistry; 1988 Sep; 27(19):7463-9. PubMed ID: 3061458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-transition-induced protein redistribution in lipid bilayers.
    Seeger HM; Bortolotti CA; Alessandrini A; Facci P
    J Phys Chem B; 2009 Dec; 113(52):16654-9. PubMed ID: 19928819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of cationic lipid toward bilayer lipid membrane by solution spreading: scanning probe microscopy study.
    Wang L; Song Y; Han X; Zhang B; Wang E
    Chem Phys Lipids; 2003 Apr; 123(2):177-85. PubMed ID: 12691850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer.
    Bayburt TH; Carlson JW; Sligar SG
    J Struct Biol; 1998 Sep; 123(1):37-44. PubMed ID: 9774543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.