These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 12097087)

  • 1. Critical properties of the synchronization transition in space-time chaos.
    Ahlers V; Pikovsky A
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):254101. PubMed ID: 12097087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal critical behavior of the synchronization transition in delayed chaotic systems.
    Szendro IG; López JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055203. PubMed ID: 16089589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition to stochastic synchronization in spatially extended systems.
    Baroni L; Livi R; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036226. PubMed ID: 11308760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic theory of synchronization transitions in extended systems.
    Muñoz MA; Pastor-Satorras R
    Phys Rev Lett; 2003 May; 90(20):204101. PubMed ID: 12785898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical properties of the synchronization transition.
    Droz M; Lipowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056204. PubMed ID: 12786247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronizing spatio-temporal chaos with imperfect models: a stochastic surface growth picture.
    Pazó D; López JM; Gallego R; Rodríguez MA
    Chaos; 2014 Dec; 24(4):043115. PubMed ID: 25554035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization universality classes and stability of smooth coupled map lattices.
    Bagnoli F; Rechtman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026202. PubMed ID: 16605424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators.
    Lauter R; Mitra A; Marquardt F
    Phys Rev E; 2017 Jul; 96(1-1):012220. PubMed ID: 29347255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class.
    Gomes WP; Penna ALA; Oliveira FA
    Phys Rev E; 2019 Aug; 100(2-1):020101. PubMed ID: 31574642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Roughening in Nonequilibrium Phase-Separated Systems.
    Besse M; Fausti G; Cates ME; Delamotte B; Nardini C
    Phys Rev Lett; 2023 May; 130(18):187102. PubMed ID: 37204903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation.
    Rodríguez-Fernández E; Santalla SN; Castro M; Cuerno R
    Phys Rev E; 2022 Aug; 106(2-1):024802. PubMed ID: 36109999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active-to-absorbing-state phase transition in the presence of fluctuating environments: weak and strong dynamic scaling.
    Sarkar N; Basu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021122. PubMed ID: 23005737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kardar-Parisi-Zhang interfaces bounded by long-ranged potentials.
    Al Hammal O; de Los Santos F; Muñoz MA; Telo da Gama MM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011121. PubMed ID: 16907074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface.
    Jana D; Haldar A; Basu A
    Phys Rev E; 2024 Mar; 109(3):L032104. PubMed ID: 38632771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-passage percolation under extreme disorder: From bond percolation to Kardar-Parisi-Zhang universality.
    Villarrubia D; Álvarez Domenech I; Santalla SN; Rodríguez-Laguna J; Córdoba-Torres P
    Phys Rev E; 2020 Jun; 101(6-1):062124. PubMed ID: 32688550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate.
    Fontaine Q; Squizzato D; Baboux F; Amelio I; Lemaître A; Morassi M; Sagnes I; Le Gratiet L; Harouri A; Wouters M; Carusotto I; Amo A; Richard M; Minguzzi A; Canet L; Ravets S; Bloch J
    Nature; 2022 Aug; 608(7924):687-691. PubMed ID: 36002483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance.
    Strack P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032131. PubMed ID: 25871078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Coupling in Conserved Surface Roughening: A New Universality Class?
    Caballero F; Nardini C; van Wijland F; Cates ME
    Phys Rev Lett; 2018 Jul; 121(2):020601. PubMed ID: 30085701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.