These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Exponential sensitivity to dephasing of electrical conduction through a quantum dot. Tworzydło J; Tajic A; Schomerus H; Brouwer PW; Beenakker CW Phys Rev Lett; 2004 Oct; 93(18):186806. PubMed ID: 15525195 [TBL] [Abstract][Full Text] [Related]
3. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
4. Conductance peaks in open quantum dots. Ramos JG; Bazeia D; Hussein MS; Lewenkopf CH Phys Rev Lett; 2011 Oct; 107(17):176807. PubMed ID: 22107559 [TBL] [Abstract][Full Text] [Related]
5. Huge conductance peak caused by symmetry in double quantum dots. Whitney RS; Marconcini P; Macucci M Phys Rev Lett; 2009 May; 102(18):186802. PubMed ID: 19518897 [TBL] [Abstract][Full Text] [Related]
6. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads. Whitney RS; Schomerus H; Kopp M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056210. PubMed ID: 20365063 [TBL] [Abstract][Full Text] [Related]
7. Mesoscopic fluctuations of nonlinear conductance of chaotic quantum dots. Polianski ML; Büttiker M Phys Rev Lett; 2006 Apr; 96(15):156804. PubMed ID: 16712185 [TBL] [Abstract][Full Text] [Related]
8. Quantum-chaotic scattering effects in semiconductor microstructures. Baranger HU; Jalabert RA; Stone AD Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071 [TBL] [Abstract][Full Text] [Related]
9. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
10. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers. Shamim S; Mahapatra S; Scappucci G; Klesse WM; Simmons MY; Ghosh A Sci Rep; 2017 May; 7():46670. PubMed ID: 28470166 [TBL] [Abstract][Full Text] [Related]
11. Doping-Induced Universal Conductance Fluctuations in GaN Nanowires. Elm MT; Uredat P; Binder J; Ostheim L; Schäfer M; Hille P; Müßener J; Schörmann J; Eickhoff M; Klar PJ Nano Lett; 2015 Dec; 15(12):7822-8. PubMed ID: 26544014 [TBL] [Abstract][Full Text] [Related]
12. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Marcus CM; Westervelt RM; Hopkins PF; Gossard AC Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069 [TBL] [Abstract][Full Text] [Related]
13. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots. Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482 [TBL] [Abstract][Full Text] [Related]
14. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
15. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots. Huang L; Yang R; Lai YC; Ferry DK J Phys Condens Matter; 2013 Feb; 25(8):085502. PubMed ID: 23343960 [TBL] [Abstract][Full Text] [Related]
16. Anticorrelation for conductance fluctuations in chaotic quantum dots. Barbosa AL; Hussein MS; Ramos JG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010901. PubMed ID: 23944401 [TBL] [Abstract][Full Text] [Related]