BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 12097341)

  • 1. The role of lineage-specific gene family expansion in the evolution of eukaryotes.
    Lespinet O; Wolf YI; Koonin EV; Aravind L
    Genome Res; 2002 Jul; 12(7):1048-59. PubMed ID: 12097341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic gene clustering analysis of pathways in eukaryotes.
    Lee JM; Sonnhammer EL
    Genome Res; 2003 May; 13(5):875-82. PubMed ID: 12695325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale compositional comparisons in eukaryotes.
    Gentles AJ; Karlin S
    Genome Res; 2001 Apr; 11(4):540-6. PubMed ID: 11282969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes.
    Pandey R; Müller A; Napoli CA; Selinger DA; Pikaard CS; Richards EJ; Bender J; Mount DW; Jorgensen RA
    Nucleic Acids Res; 2002 Dec; 30(23):5036-55. PubMed ID: 12466527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes.
    Mushegian AR; Garey JR; Martin J; Liu LX
    Genome Res; 1998 Jun; 8(6):590-8. PubMed ID: 9647634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Riechmann JL; Heard J; Martin G; Reuber L; Jiang C; Keddie J; Adam L; Pineda O; Ratcliffe OJ; Samaha RR; Creelman R; Pilgrim M; Broun P; Zhang JZ; Ghandehari D; Sherman BK; Yu G
    Science; 2000 Dec; 290(5499):2105-10. PubMed ID: 11118137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila.
    Boudet N; Aubourg S; Toffano-Nioche C; Kreis M; Lecharny A
    Genome Res; 2001 Dec; 11(12):2101-14. PubMed ID: 11731501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OrthoMCL: identification of ortholog groups for eukaryotic genomes.
    Li L; Stoeckert CJ; Roos DS
    Genome Res; 2003 Sep; 13(9):2178-89. PubMed ID: 12952885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern and timing of gene duplication in animal genomes.
    Friedman R; Hughes AL
    Genome Res; 2001 Nov; 11(11):1842-7. PubMed ID: 11691848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene duplication and the structure of eukaryotic genomes.
    Friedman R; Hughes AL
    Genome Res; 2001 Mar; 11(3):373-81. PubMed ID: 11230161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phylogenetic diversity of eukaryotic transcription.
    Coulson RM; Ouzounis CA
    Nucleic Acids Res; 2003 Jan; 31(2):653-60. PubMed ID: 12527774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The COG database: an updated version includes eukaryotes.
    Tatusov RL; Fedorova ND; Jackson JD; Jacobs AR; Kiryutin B; Koonin EV; Krylov DM; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Smirnov S; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    BMC Bioinformatics; 2003 Sep; 4():41. PubMed ID: 12969510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved.
    Babenko VN; Krylov DM
    Nucleic Acids Res; 2004; 32(17):5029-35. PubMed ID: 15448184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mystery of intron gain.
    Fedorov A; Roy S; Fedorova L; Gilbert W
    Genome Res; 2003 Oct; 13(10):2236-41. PubMed ID: 12975308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
    Sverdlov AV; Babenko VN; Rogozin IB; Koonin EV
    Gene; 2004 Aug; 338(1):85-91. PubMed ID: 15302409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes.
    Sheps JA; Ralph S; Zhao Z; Baillie DL; Ling V
    Genome Biol; 2004; 5(3):R15. PubMed ID: 15003118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery.
    Zielinska DF; Gnad F; Schropp K; Wiśniewski JR; Mann M
    Mol Cell; 2012 May; 46(4):542-8. PubMed ID: 22633491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis.
    Ledent V; Vervoort M
    Genome Res; 2001 May; 11(5):754-70. PubMed ID: 11337472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.