These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 12097821)
1. Transendothelial transport of low-density lipoprotein and albumin across the rat peritoneum in vivo: effects of the transcytosis inhibitors NEM and filipin. Rosengren BI; Al Rayyes O; Rippe B J Vasc Res; 2002; 39(3):230-7. PubMed ID: 12097821 [TBL] [Abstract][Full Text] [Related]
2. NEM and filipin increase albumin transport in lung microvessels. Rippe B; Taylor A Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H34-41. PubMed ID: 11123215 [TBL] [Abstract][Full Text] [Related]
4. Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passive transport? Rosengren BI; Carlsson O; Venturoli D; al Rayyes O; Rippe B J Vasc Res; 2004; 41(2):123-30. PubMed ID: 15010575 [TBL] [Abstract][Full Text] [Related]
5. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Predescu D; Horvat R; Predescu S; Palade GE Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3014-8. PubMed ID: 8159697 [TBL] [Abstract][Full Text] [Related]
6. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. Schnitzer JE; Oh P; Pinney E; Allard J J Cell Biol; 1994 Dec; 127(5):1217-32. PubMed ID: 7525606 [TBL] [Abstract][Full Text] [Related]
7. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Schnitzer JE; Allard J; Oh P Am J Physiol; 1995 Jan; 268(1 Pt 2):H48-55. PubMed ID: 7840297 [TBL] [Abstract][Full Text] [Related]
8. Transcytosis inhibitor N-ethylmaleimide increases microvascular permeability in rat muscle. Carlsson O; Rosengren BI; Rippe B Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1728-33. PubMed ID: 11557564 [TBL] [Abstract][Full Text] [Related]
9. Limitation of small-solute exchange across the visceral peritoneum: effects of vibration. Zakaria el-R ; Carlsson O; Rippe B Perit Dial Int; 1997; 17(1):72-9. PubMed ID: 9068026 [TBL] [Abstract][Full Text] [Related]
10. Very high daily intraperitoneal doses of carbonyl compounds affect the morphology, but not the exchange characteristics, of rat peritoneum. Musi B; Braide M; Wieslander A; Rippe A; Albrektsson A; Henle T; Rippe B Blood Purif; 2001; 19(3):286-92. PubMed ID: 11244188 [TBL] [Abstract][Full Text] [Related]
11. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume. Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112 [TBL] [Abstract][Full Text] [Related]
12. Effects of peritoneal hyaluronidase treatment on transperitoneal solute and fluid transport in the rat. Carlsson O; Rosengren BI; Rippe B Acta Physiol Scand; 2000 Mar; 168(3):371-6. PubMed ID: 10712574 [TBL] [Abstract][Full Text] [Related]
13. Complex effects of sulfhydryl reagents on ligand interactions with nucleoside transporters: evidence for multiple populations of ENT1 transporters with differential sensitivities to N-ethylmaleimide. Vyas S; Ahmadi B; Hammond JR Arch Biochem Biophys; 2002 Jul; 403(1):92-102. PubMed ID: 12061806 [TBL] [Abstract][Full Text] [Related]
14. Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats. Rosengren BI; Rippe B J Am Soc Nephrol; 2003 Jun; 14(6):1599-604. PubMed ID: 12761261 [TBL] [Abstract][Full Text] [Related]
15. Vasodilatation by intraperitoneal addition of nitroprusside is not a model for high peritoneal transport. Wang T; Cheng HH; Heimbürger O; Bergström J; Lindholm B Adv Perit Dial; 1999; 15():53-9. PubMed ID: 10682072 [TBL] [Abstract][Full Text] [Related]
16. N-Ethylmaleimide differentially inhibits substrate uptake by and ligand binding to the noradrenaline transporter. Wenge B; Bönisch H Naunyn Schmiedebergs Arch Pharmacol; 2008 May; 377(3):255-65. PubMed ID: 18357440 [TBL] [Abstract][Full Text] [Related]
17. Effect of peritonitis on peritoneal transport characteristics: glucose solution versus polyglucose solution. Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B Kidney Int; 2000 Apr; 57(4):1704-12. PubMed ID: 10760106 [TBL] [Abstract][Full Text] [Related]
18. Hexose transport in L6 rat myoblasts. II. The effects of sulfhydryl reagents. D'Amore T; Lo TC J Cell Physiol; 1986 Apr; 127(1):106-13. PubMed ID: 3007535 [TBL] [Abstract][Full Text] [Related]
19. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ. Zhang Y; Yang X; Bian F; Wu P; Xing S; Xu G; Li W; Chi J; Ouyang C; Zheng T; Wu D; Zhang Y; Li Y; Jin S J Mol Cell Cardiol; 2014 Jul; 72():85-94. PubMed ID: 24594319 [TBL] [Abstract][Full Text] [Related]
20. Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane. Asgeirsson D; Axelsson J; Rippe C; Rippe B Acta Physiol (Oxf); 2009 Aug; 196(4):427-33. PubMed ID: 19141139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]