These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12098249)

  • 41. Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters.
    Su H; Zhang KX; Zhang B; Wang HH; Yu QY; Li XH; Antonietti M; Chen JS
    J Am Chem Soc; 2017 Jan; 139(2):811-818. PubMed ID: 28006898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On-demand Hydrogen Production from Organosilanes at Ambient Temperature Using Heterogeneous Gold Catalysts.
    Mitsudome T; Urayama T; Kiyohiro T; Maeno Z; Mizugaki T; Jitsukawa K; Kaneda K
    Sci Rep; 2016 Nov; 6():37682. PubMed ID: 27883063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diffusion and NOE NMR studies on the interactions of neutral amino-acidate arene ruthenium(II) supramolecular aggregates with ions and ion pairs.
    Ciancaleoni G; Zuccaccia C; Zuccaccia D; Macchioni A
    Magn Reson Chem; 2008; 46 Suppl 1():S72-9. PubMed ID: 18853476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper Nanoparticles in Click Chemistry.
    Alonso F; Moglie Y; Radivoy G
    Acc Chem Res; 2015 Sep; 48(9):2516-28. PubMed ID: 26332570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reactivity and catalytic activity of a robust ruthenium(II)-triphos complex.
    Chaplin AB; Dyson PJ
    Inorg Chem; 2008 Jan; 47(1):381-90. PubMed ID: 18044884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ formation of ruthenium catalysts for the homogeneous hydrogenation of carbon dioxide.
    Tai CC; Pitts J; Linehan JC; Main AD; Munshi P; Jessop PG
    Inorg Chem; 2002 Mar; 41(6):1606-14. PubMed ID: 11896731
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ruthenium catalysed C-H bond borylation.
    Fernández-Salas JA; Manzini S; Piola L; Slawin AM; Nolan SP
    Chem Commun (Camb); 2014 Jun; 50(51):6782-4. PubMed ID: 24835857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran or 2-Formyl-5-furancarboxylic Acid in Water by using MgO⋅CeO
    Ventura M; Lobefaro F; de Giglio E; Distaso M; Nocito F; Dibenedetto A
    ChemSusChem; 2018 Apr; 11(8):1305-1315. PubMed ID: 29513920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC
    ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols.
    Qi Y; Luan Y; Yu J; Peng X; Wang G
    Chemistry; 2015 Jan; 21(4):1589-97. PubMed ID: 25430789
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.
    Venkatesan S; Kumar AS; Lee JF; Chan TS; Zen JM
    Chemistry; 2012 May; 18(20):6147-51. PubMed ID: 22489045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol.
    Hu Z; Zhao Y; Liu J; Wang J; Zhang B; Xiang X
    J Colloid Interface Sci; 2016 Dec; 483():26-33. PubMed ID: 27544446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. P-Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism.
    Patel MA; Luo F; Khoshi MR; Rabie E; Zhang Q; Flach CR; Mendelsohn R; Garfunkel E; Szostak M; He H
    ACS Nano; 2016 Feb; 10(2):2305-15. PubMed ID: 26751165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The aminocyclodextrin/Pd(OAc)2 complex as an efficient catalyst for the Mizoroki-Heck cross-coupling reaction.
    Kanagaraj K; Pitchumani K
    Chemistry; 2013 Oct; 19(43):14425-31. PubMed ID: 24115295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ruthenium-catalyzed stereoselective intramolecular carbenoid C-H insertion for beta- and gamma-lactam formations by decomposition of alpha-diazoacetamides.
    Choi MK; Yu WY; Che CM
    Org Lett; 2005 Mar; 7(6):1081-4. PubMed ID: 15760144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A highly efficient macrolactonization method via ethoxyvinyl ester.
    Ohba Y; Takatsuji M; Nakahara K; Fujioka H; Kita Y
    Chemistry; 2009; 15(14):3526-37. PubMed ID: 19229939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A ruthenium(II) complex with p-cymene and (S)-2-(anilinomethyl)pyrrolidine.
    Aitali M; El Firdoussi L ; Karim A; Barrero AF; Quiros M
    Acta Crystallogr C; 2000 Sep; 56 (Pt 9)():1088-9. PubMed ID: 10986491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tailoring the catalytic performance of sol-gel-encapsulated tetra-n-propylammonium perruthenate (TPAP) in aerobic oxidation of alcohols.
    Ciriminna R; Pagliaro M
    Chemistry; 2003 Oct; 9(20):5067-73. PubMed ID: 14562324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.