BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 12098698)

  • 21. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2023; 2620():51-61. PubMed ID: 37010748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway.
    Liu YJ; Liu C; Chang Z; Wadas B; Brower CS; Song ZH; Xu ZL; Shang YL; Liu WX; Wang LN; Dong W; Varshavsky A; Hu RG; Li W
    J Biol Chem; 2016 Apr; 291(14):7426-38. PubMed ID: 26858254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATE1-Mediated Post-Translational Arginylation Is an Essential Regulator of Eukaryotic Cellular Homeostasis.
    Van V; Smith AT
    ACS Chem Biol; 2020 Dec; 15(12):3073-3085. PubMed ID: 33228359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-translational protein arginylation in the normal nervous system and in neurodegeneration.
    Galiano MR; Goitea VE; Hallak ME
    J Neurochem; 2016 Aug; 138(4):506-17. PubMed ID: 27318192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Arginylation Assay in Microplate Format.
    Saha S; Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():79-82. PubMed ID: 26285884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structural basis of tRNA recognition by arginyl-tRNA-protein transferase.
    Abeywansha T; Huang W; Ye X; Nawrocki A; Lan X; Jankowsky E; Taylor DJ; Zhang Y
    Nat Commun; 2023 Apr; 14(1):2232. PubMed ID: 37076488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2015; 1337():49-58. PubMed ID: 26285880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.
    Jiang Y; Lee J; Lee JH; Lee JW; Kim JH; Choi WH; Yoo YD; Cha-Molstad H; Kim BY; Kwon YT; Noh SA; Kim KP; Lee MJ
    Autophagy; 2016 Nov; 12(11):2197-2212. PubMed ID: 27560450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Posttranslational arginylation as a global biological regulator.
    Saha S; Kashina A
    Dev Biol; 2011 Oct; 358(1):1-8. PubMed ID: 21784066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.
    Brower CS; Rosen CE; Jones RH; Wadas BC; Piatkov KI; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4936-45. PubMed ID: 25369936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots.
    Zhang H; Deery MJ; Gannon L; Powers SJ; Lilley KS; Theodoulou FL
    Proteomics; 2015 Jul; 15(14):2447-57. PubMed ID: 25728785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation.
    Avcilar-Kucukgoze I; MacTaggart B; Kashina A
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Interplay between Arginyl-tRNA Synthetases and Arginyltransferase.
    Avcilar-Kucukgoze I; MacTaggart B; Kashina A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assaying ATE1 Activity In Vitro.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():113-117. PubMed ID: 37010756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations.
    Brower CS; Varshavsky A
    PLoS One; 2009 Nov; 4(11):e7757. PubMed ID: 19915679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global Analysis of Post-Translational Side-Chain Arginylation Using Pan-Arginylation Antibodies.
    MacTaggart B; Shimogawa M; Lougee M; Tang HY; Petersson EJ; Kashina A
    Mol Cell Proteomics; 2023 Nov; 22(11):100664. PubMed ID: 37832787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The identification and characterisation of a functional interaction between arginyl-tRNA-protein transferase and topoisomerase II.
    Barker CR; Mouchel NA; Jenkins JR
    Biochem Biophys Res Commun; 2006 Apr; 342(2):596-604. PubMed ID: 16488395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.