These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 12098698)

  • 81. Arginyl-tRNA-protein transferase 1 (ATE1) promotes melanoma cell growth and migration.
    Lazar I; Fabre B; Feng Y; Khateb A; Frit P; Kashina A; Zhang T; Avitan-Hersh E; Kim H; Brown K; Topisirovic I; Ronai ZA
    FEBS Lett; 2022 Jun; 596(11):1468-1480. PubMed ID: 35561126
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases.
    Rai R; Mushegian A; Makarova K; Kashina A
    EMBO Rep; 2006 Aug; 7(8):800-5. PubMed ID: 16826240
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo.
    Saha S; Wong CC; Xu T; Namgoong S; Zebroski H; Yates JR; Kashina A
    Chem Biol; 2011 Nov; 18(11):1369-78. PubMed ID: 22118671
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Development of New Tools for the Studies of Protein Arginylation.
    Kashina AS
    Methods Mol Biol; 2023; 2620():287-293. PubMed ID: 37010771
    [TBL] [Abstract][Full Text] [Related]  

  • 85. R-catcher, a potent molecular tool to unveil the arginylome.
    Seo T; Kim J; Shin HC; Kim JG; Ju S; Nawale L; Han G; Lee HS; Bang G; Kim JY; Bang JK; Lee KH; Soung NK; Hwang J; Lee C; Kim SJ; Kim BY; Cha-Molstad H
    Cell Mol Life Sci; 2021 Apr; 78(7):3725-3741. PubMed ID: 33687501
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Analysis of Arginylated Peptides by Subtractive Edman Degradation.
    Kashina AS; Yates JR
    Methods Mol Biol; 2015; 1337():105-7. PubMed ID: 26285887
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Protein Arginylation: Over 50 Years of Discovery.
    Kashina AS
    Methods Mol Biol; 2015; 1337():1-11. PubMed ID: 26285874
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis.
    Saha S; Wang J; Buckley B; Wang Q; Lilly B; Chernov M; Kashina A
    Biochem Pharmacol; 2012 Apr; 83(7):866-73. PubMed ID: 22280815
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Assaying ATE1 Activity In Vitro.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():73-7. PubMed ID: 26285883
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Conditional Tek promoter-driven deletion of arginyltransferase in the germ line causes defects in gametogenesis and early embryonic lethality in mice.
    Leu NA; Kurosaka S; Kashina A
    PLoS One; 2009 Nov; 4(11):e7734. PubMed ID: 19890395
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells.
    Moorthy BT; Jiang C; Patel DM; Ban Y; O'Shea CR; Kumar A; Yuan T; Birnbaum MD; Gomes AV; Chen X; Fontanesi F; Lampidis TJ; Barrientos A; Zhang F
    Dev Cell; 2022 Mar; 57(5):654-669.e9. PubMed ID: 35247316
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Preparation of ATE1 Enzyme from Native Mammalian Tissues.
    Kashina AS
    Methods Mol Biol; 2015; 1337():33-7. PubMed ID: 26285878
    [TBL] [Abstract][Full Text] [Related]  

  • 93. [Embryology of the heart and the great vessels. XI. Main congenital malformations].
    Sawaya N
    Arq Bras Cardiol; 1968 Oct; 21(5):347-56 contd. PubMed ID: 5714683
    [No Abstract]   [Full Text] [Related]  

  • 94. Synthesis of Peptides and Proteins with Site-Specific Glutamate Arginylation.
    Shimogawa M; Huang Y; Pan B; Petersson EJ
    Methods Mol Biol; 2023; 2620():177-207. PubMed ID: 37010763
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Arginyltransferase: A Personal and Historical Perspective.
    Soffer RL
    Methods Mol Biol; 2023; 2620():21-25. PubMed ID: 37010744
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evidence that oxidized proteins are substrates for N-terminal arginylation.
    Zhang N; Donnelly R; Ingoglia NA
    Neurochem Res; 1998 Nov; 23(11):1411-20. PubMed ID: 9814552
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Arginyltransferase: A Personal and Historical Perspective.
    Soffer RL
    Methods Mol Biol; 2015; 1337():19-23. PubMed ID: 26285876
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Assaying for Arginyltransferase Activity and Specificity by Peptide Arrays.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():123-127. PubMed ID: 37010758
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Isolation of a peptide that inhibits the posttranslational arginylation of proteins in rat brain.
    Yu M; Grabow M; Ingoglia NA
    J Mol Neurosci; 1993; 4(3):195-203. PubMed ID: 8292492
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Assaying Intracellular Arginylation Activity Using a Fluorescent Reporter.
    MacTaggart B; Kashina AS
    Methods Mol Biol; 2023; 2620():81-85. PubMed ID: 37010751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.