BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 12099212)

  • 21. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia.
    Janson S
    Environ Microbiol; 2004 Oct; 6(10):1102-6. PubMed ID: 15344936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plastid endosymbiosis, genome evolution and the origin of green plants.
    Stiller JW
    Trends Plant Sci; 2007 Sep; 12(9):391-6. PubMed ID: 17698402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum.
    Minge MA; Shalchian-Tabrizi K; Tørresen OK; Takishita K; Probert I; Inagaki Y; Klaveness D; Jakobsen KS
    BMC Evol Biol; 2010 Jun; 10():191. PubMed ID: 20565933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recycled plastids: a 'green movement' in eukaryotic evolution.
    Archibald JM; Keeling PJ
    Trends Genet; 2002 Nov; 18(11):577-84. PubMed ID: 12414188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plastid ultrastructure defines the protein import pathway in dinoflagellates.
    Nassoury N; Cappadocia M; Morse D
    J Cell Sci; 2003 Jul; 116(Pt 14):2867-74. PubMed ID: 12771189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont.
    Ishida K; Green BR
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9294-9. PubMed ID: 12089328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions.
    Iida K; Takishita K; Ohshima K; Inagaki Y
    Mol Phylogenet Evol; 2007 Oct; 45(1):227-38. PubMed ID: 17591448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An assessment of vertical inheritance versus endosymbiont transfer of nucleus-encoded genes for mitochondrial proteins following tertiary endosymbiosis in Karlodinium micrum.
    Danne JC; Gornik SG; Waller RF
    Protist; 2012 Jan; 163(1):76-90. PubMed ID: 21741306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis.
    Uthanumallian K; Iha C; Repetti SI; Chan CX; Bhattacharya D; Duchene S; Verbruggen H
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34613411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A secondary symbiosis in progress?
    Okamoto N; Inouye I
    Science; 2005 Oct; 310(5746):287. PubMed ID: 16224014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis.
    Bodył A
    Plant Biol (Stuttg); 2004 Sep; 6(5):513-8. PubMed ID: 15375721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes.
    Nowack EC; Melkonian M; Glöckner G
    Curr Biol; 2008 Mar; 18(6):410-8. PubMed ID: 18356055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Genomics and evolution of cellular organelles].
    Odintsova MS; Iurina NP
    Genetika; 2005 Sep; 41(9):1170-82. PubMed ID: 16240629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.
    Matsuzaki M; Kuroiwa H; Kuroiwa T; Kita K; Nozaki H
    Mol Biol Evol; 2008 Jun; 25(6):1167-79. PubMed ID: 18359776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plastid biogenesis, between light and shadows.
    López-Juez E
    J Exp Bot; 2007; 58(1):11-26. PubMed ID: 17108152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts.
    Hehenberger E; Imanian B; Burki F; Keeling PJ
    Genome Biol Evol; 2014 Sep; 6(9):2321-34. PubMed ID: 25172904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.