These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12099496)

  • 1. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed.
    Ho TC; Kobayashi N; Lee YK; Lin CJ; Hopper JR
    Waste Manag; 2002; 22(4):391-8. PubMed ID: 12099496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous control of metals and organics using a fluidized bed adsorber.
    Chiang BC; Wey MY; Yang WY; Lu CY
    Environ Technol; 2003 Sep; 24(9):1103-15. PubMed ID: 14599144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of acid gases using a fluidized bed adsorber.
    Chiang BC; Wey MY; Yeh CL
    J Hazard Mater; 2003 Aug; 101(3):259-72. PubMed ID: 12935758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes.
    Gupta A; Vidyarthi SR; Sankararamakrishnan N
    J Hazard Mater; 2014 Jun; 274():132-44. PubMed ID: 24780855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors.
    Karatza D; Prisciandaro M; Lancia A; Musmarra D
    J Environ Sci (China); 2011; 23(9):1578-84. PubMed ID: 22432297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.
    Porkodi K; Vasanth Kumar K
    J Hazard Mater; 2007 May; 143(1-2):311-27. PubMed ID: 17069970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-parameter empirical isotherm model: its application to sorption onto organoclays.
    Song DI; Shin WS
    Environ Sci Technol; 2005 Feb; 39(4):1138-43. PubMed ID: 15773487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.
    Musmarra D; Karatza D; Lancia A; Prisciandaro M; Mazziotti di Celso G
    J Air Waste Manag Assoc; 2016 Jul; 66(7):698-706. PubMed ID: 27043167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury removal from MSW incineration flue gas by mineral-based sorbents.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    Waste Manag; 2018 Mar; 73():265-270. PubMed ID: 29248369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Modeling on the Adsorption of Vapor-Phase Mercury Chloride on Activated Carbon by Thermogravimetric Analysis.
    Chen WC; Lin HY; Yuan CS; Hung CH
    J Air Waste Manag Assoc; 2009 Feb; 59(2):227-235. PubMed ID: 29116917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa.
    Inbaraj BS; Sulochana N
    J Hazard Mater; 2006 May; 133(1-3):283-90. PubMed ID: 16326005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of bamboo-derived sorbents for mercury removal in gas phase.
    Siddiqui N; Don J; Mondal K; Mahajan A
    Environ Technol; 2011; 32(3-4):383-94. PubMed ID: 21780706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling VOC adsorption in lab- and industrial-scale fluidized bed adsorbers: Effect of operating parameters and heel build-up.
    Davarpanah M; Hashisho Z; Crompton D; Anderson JE; Nichols M
    J Hazard Mater; 2020 Dec; 400():123129. PubMed ID: 32569982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs).
    Hsi HC; Rood MJ; Rostam-Abadi M; Chen S; Chang R
    Environ Sci Technol; 2001 Jul; 35(13):2785-91. PubMed ID: 11452610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entrained-flow adsorption of mercury using activated carbon.
    Serre SD; Gullett BK; Ghorishi SB
    J Air Waste Manag Assoc; 2001 May; 51(5):733-41. PubMed ID: 11355461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies.
    Ghodbane I; Hamdaoui O
    J Hazard Mater; 2008 Dec; 160(2-3):301-9. PubMed ID: 18400378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.
    Skodras G; Diamantopoulou I; Pantoleontos G; Sakellaropoulos GP
    J Hazard Mater; 2008 Oct; 158(1):1-13. PubMed ID: 18321645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4367-72. PubMed ID: 11718359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of mercury emissions from a municipal solid waste incinerator in Japan.
    Takaoka M; Takeda N; Fujiwara T; Kurata M; Kimura T
    J Air Waste Manag Assoc; 2002 Aug; 52(8):931-40. PubMed ID: 12184692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.