These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12099503)

  • 1. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling.
    Bebar L; Kermes V; Stehlik P; Canek J; Oral J
    Waste Manag; 2002; 22(4):443-51. PubMed ID: 12099503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.
    Bešenić T; Mikulčić H; Vujanović M; Duić N
    J Environ Manage; 2018 Jun; 215():177-184. PubMed ID: 29571098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.
    Löschau M
    Waste Manag Res; 2018 Apr; 36(4):342-350. PubMed ID: 29451103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions.
    Jaeglé L; Steinberger L; Martin RV; Chance K
    Faraday Discuss; 2005; 130():407-23; discussion 491-517, 519-24. PubMed ID: 16161795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-assisted combustion technology for NOx reduction in industrial burners.
    Lee DH; Kim KT; Kang HS; Song YH; Park JE
    Environ Sci Technol; 2013 Oct; 47(19):10964-70. PubMed ID: 24032692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.
    Zajemska M; Musiał D; Poskart A
    Environ Technol; 2014; 35(5-8):602-10. PubMed ID: 24645439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.
    Park M; Shim SH; Jeong SH; Oh KJ; Lee SS
    J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.
    Walters WW; Tharp BD; Fang H; Kozak BJ; Michalski G
    Environ Sci Technol; 2015 Oct; 49(19):11363-71. PubMed ID: 26332865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.
    Roy B; Chen L; Bhattacharya S
    Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of calcium oxide content in marine fuel oil on emission characteristics of marine furnaces under varying humidity and temperature of the inlet air.
    Lin CY; Chen WC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):281-97. PubMed ID: 15030157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Investigation of the Interaction between NO
    Choudhury NN; Padak B
    Environ Sci Technol; 2017 Nov; 51(21):12918-12924. PubMed ID: 28982004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating combustion kinetics and quantifying fuel-N conversion tendency of shoe manufacturing waste.
    Sun G; Li L; Duan Y; Chen Y; Gu Q; Wang Y; Sun Z; Mao J; Qian X; Duan L
    Environ Res; 2024 Jun; 250():118339. PubMed ID: 38325791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion performance evaluation of air staging of palm oil blends.
    Mohd Jaafar MN; Eldrainy YA; Mat Ali MF; Wan Omar WZ; Mohd Hizam MF
    Environ Sci Technol; 2012 Feb; 46(4):2445-50. PubMed ID: 22296110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization.
    Yang Y; Zhang Y; Li S; Liu R; Duan E
    Chemosphere; 2020 Nov; 258():127420. PubMed ID: 32947658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effect of the primary furnace temperature.
    Wang J; Levendis YA; Richter H; Howard JB; Carlson J
    Environ Sci Technol; 2001 Sep; 35(17):3541-52. PubMed ID: 11563660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particulate and gaseous emissions during fluidized bed combustion of semi-dried sewage sludge: effect of bed ash accumulation on NOx formation.
    Cammarota A; Chirone R; Salatino P; Solimene R; Urciuolo M
    Waste Manag; 2013 Jun; 33(6):1397-402. PubMed ID: 23490356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on toxic organic emissions from batch combustion of styrene.
    Westblad C; Levendis YA; Richter H; Howard JB; Carlson J
    Chemosphere; 2002 Oct; 49(4):395-412. PubMed ID: 12365837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.
    Moomaw WR
    Ambio; 2002 Mar; 31(2):184-9. PubMed ID: 12078008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of functional forms of nitrogen on fuel-NOx emissions.
    Zhang L; Su D; Zhong M
    Environ Monit Assess; 2015 Jan; 187(1):4195. PubMed ID: 25527433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.