BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12099537)

  • 1. The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance.
    Stevens KJ; Peterson RL; Reader RJ
    Ann Bot; 2002 May; 89(5):621-5. PubMed ID: 12099537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus.
    Teakle NL; Armstrong J; Barrett-Lennard EG; Colmer TD
    New Phytol; 2011 Apr; 190(2):340-50. PubMed ID: 21299566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among three pathways for resource acquisition and their contribution to plant performance in the emergent aquatic Plant Lythrum salicaria (L.).
    Stevens KJ; Peterson RL
    Plant Biol (Stuttg); 2007 Nov; 9(6):758-65. PubMed ID: 17538864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus.
    Verboven P; Pedersen O; Herremans E; Ho QT; Nicolaï BM; Colmer TD; Teakle N
    New Phytol; 2012 Jan; 193(2):420-31. PubMed ID: 22029709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions.
    Stevens KJ; Spender SW; Peterson RL
    Mycorrhiza; 2002 Dec; 12(6):277-83. PubMed ID: 12466914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.
    Pedersen O; Rich SM; Colmer TD
    Plant J; 2009 Apr; 58(1):147-56. PubMed ID: 19077169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.
    Takahashi H; Xiaohua Q; Shimamura S; Yanagawa A; Hiraga S; Nakazono M
    Ann Bot; 2018 Mar; 121(4):723-732. PubMed ID: 29370345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of Lotus japonicus.
    Striker GG; Casas C; Manzur ME; Ploschuk RA; Casal JJ
    Plant Cell Environ; 2014 Oct; 37(10):2278-93. PubMed ID: 24393069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants.
    Konnerup D; Toro G; Pedersen O; Colmer TD
    Ann Bot; 2018 Mar; 121(4):699-709. PubMed ID: 29351575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater flowering and response to flooding in
    Mattingly KZ; Braasch BN; Hovick SM
    AoB Plants; 2023 Feb; 15(2):plad009. PubMed ID: 36994381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.
    Shimamura S; Yamamoto R; Nakamura T; Shimada S; Komatsu S
    Ann Bot; 2010 Aug; 106(2):277-84. PubMed ID: 20660468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triterpenoids in aerenchymatous phellem contribute to internal root aeration and waterlogging adaptability in soybeans.
    Takahashi H; Abo C; Suzuki H; Romsuk J; Oi T; Yanagawa A; Gorai T; Tomisaki Y; Jitsui M; Shimamura S; Mori H; Kaga A; Ishimoto M; Seki H; Muranaka T; Nakazono M
    New Phytol; 2023 Aug; 239(3):936-948. PubMed ID: 37270736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different strategies of Lotus japonicus, L. corniculatus and L. tenuis to deal with complete submergence at seedling stage.
    Striker GG; Izaguirre RF; Manzur ME; Grimoldi AA
    Plant Biol (Stuttg); 2012 Jan; 14(1):50-5. PubMed ID: 21972978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flooding tolerance of forage legumes.
    Striker GG; Colmer TD
    J Exp Bot; 2017 Apr; 68(8):1851-1872. PubMed ID: 27325893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes.
    Dech JP; Maun MA
    Ann Bot; 2006 Nov; 98(5):1095-105. PubMed ID: 17018567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion].
    Bragina TV; Martinovich LI; Rodionova NA; Bezborodov AM; Grineva GM
    Prikl Biokhim Mikrobiol; 2001; 37(6):722-5. PubMed ID: 11771328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance to partial and complete submergence in the forage legume Melilotus siculus: an evaluation of 15 accessions for petiole hyponastic response and gas-filled spaces, leaf hydrophobicity and gas films, and root phellem.
    Striker GG; Kotula L; Colmer TD
    Ann Bot; 2019 Jan; 123(1):169-180. PubMed ID: 30124766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.