These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12099607)

  • 1. Straightness measurements with a reflection confocal optical system-an experimental study.
    Matsuda K; Roy M; Eiju T; O'Byrne JW; Sheppard CJ
    Appl Opt; 2002 Jul; 41(19):3966-70. PubMed ID: 12099607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Straightness measurements by use of a reflection confocal optical system.
    Matsuda K; Roy M; O'Byrne JW; Fekete PW; Eiju T; Sheppard CJ
    Appl Opt; 1999 Sep; 38(25):5310-8. PubMed ID: 18324033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A laser interferometer for measuring straightness and its position based on heterodyne interferometry.
    Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q
    Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional straightness measurement based on optical knife-edge sensing.
    Wang C; Zhong F; Ellis JD
    Rev Sci Instrum; 2017 Sep; 88(9):095109. PubMed ID: 28964181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage.
    Liu CH; Chen JH; Teng YF
    Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Approach to Measure Tilt Motion, Straightness and Position of Precision Linear Stage with a 3D Sinusoidal-Groove Linear Reflective Grating and Triangular Wave-Based Subdivision Method.
    Tsai HA; Lo YL
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement.
    Lee JY; Hsieh HL; Lerondel G; Deturche R; Lu MP; Chen JC
    Appl Opt; 2011 Mar; 50(9):1272-9. PubMed ID: 21460999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the straightness measurements on rough surfaces by Monte Carlo simulation.
    Hennebelle F; Coorevits T; Bigerelle M
    Scanning; 2014; 36(1):161-9. PubMed ID: 23878092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.
    Qibo F; Bin Z; Cunxing C; Cuifang K; Yusheng Z; Fenglin Y
    Opt Express; 2013 Nov; 21(22):25805-19. PubMed ID: 24216807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic calibration method of the laser beam for a non-orthogonal shaft laser theodolite measurement system.
    Miao F; Wu B; Peng C; Ma G; Xue T
    Appl Opt; 2019 Nov; 58(33):9020-9026. PubMed ID: 31873576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-degrees-of-freedom measurement system for measuring straightness errors and their position based on the Faraday effect.
    Zhang E; Teng X; Chen B; Zhang S; Li Z
    Appl Opt; 2020 Jan; 59(3):764-770. PubMed ID: 32225207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors.
    Pillarz M; von Freyberg A; Stöbener D; Fischer A
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33573336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving optical bench radius measurements using stage error motion data.
    Schmitz TL; Gardner N; Vaughn M; Medicus K; Davies A
    Appl Opt; 2008 Dec; 47(36):6692-700. PubMed ID: 19104521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-microscope specimen holder with 3-axis rotation and small-angle control.
    Iwabuchi S; Koh JY; Wardenburg M; Johnson JD; Harata NC
    J Neurosci Methods; 2014 Jan; 221():15-21. PubMed ID: 24025262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic calibration and compensation method of a large-scale laser beam based on specular reflection for a nonorthogonal shaft laser theodolite measurement system.
    Miao F; Wu B; Sun Z; Peng C; Ma G
    Appl Opt; 2020 Nov; 59(32):10113-10120. PubMed ID: 33175787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser multi-reflection differential confocal long focal-length measurement.
    Li Z; Qiu L; Zhao W; Zhao Q
    Appl Opt; 2016 Jun; 55(18):4910-6. PubMed ID: 27409117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.
    Cui C; Feng Q; Zhang B; Zhao Y
    Opt Express; 2016 Mar; 24(6):6735-48. PubMed ID: 27136860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.