These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12099611)

  • 1. Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation.
    Intes X; Chen Y; Li X; Chance B
    Appl Opt; 2002 Jul; 41(19):3999-4007. PubMed ID: 12099611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption.
    Li X; Chance B; Yodh AG
    Appl Opt; 1998 Oct; 37(28):6833-44. PubMed ID: 18301500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media.
    Roy R; Godavarty A; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2003 Jul; 22(7):824-36. PubMed ID: 12906236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications.
    Li XD; O'Leary MA; Boas DA; Chance B; Yodh AG
    Appl Opt; 1996 Jul; 35(19):3746-58. PubMed ID: 21102772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications.
    Boas DA; O'Leary MA; Chance B; Yodh AG
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4887-91. PubMed ID: 8197151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorescence lifetime imaging in turbid media: the forward problem.
    Soloviev V; Wilson D; Vinogradov S
    Appl Opt; 2003 Jan; 42(1):113-23. PubMed ID: 12518830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed near infrared fluorescence lifetime imaging in turbid media.
    Harel M; Arbiv U; Ankri R
    J Biomed Opt; 2024 Feb; 29(2):026004. PubMed ID: 38425720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional optical detection based on pH dependent fluorescence lifetime.
    Gannot I; Ron I; Hekmat F; Chernomordik V; Gandjbakhche A
    Lasers Surg Med; 2004; 35(5):342-8. PubMed ID: 15611954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared fluorescence contrast-enhanced imaging with area illumination and area detection: the forward imaging problem.
    Thompson AB; Hawrysz DJ; Sevick-Muraca EM
    Appl Opt; 2003 Jul; 42(19):4125-36. PubMed ID: 12868856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source.
    Chen Y; Mu C; Intes X; Chance B
    Opt Express; 2001 Aug; 9(4):212-24. PubMed ID: 19421292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical models for time resolved fluorescence spectroscopy in tissues.
    Sadoqi M; Riseborough P; Kumar S
    Phys Med Biol; 2001 Oct; 46(10):2725-43. PubMed ID: 11686285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green functions for diffuse photon-density waves generated by a line source in two nonabsorbing turbid media in contact.
    Shendeleva ML
    Appl Opt; 2004 Mar; 43(8):1638-42. PubMed ID: 15046165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locating inhomogeneities in tissue by using the most probable diffuse path of light.
    Bai J; Gao T; Ying K; Chen N
    J Biomed Opt; 2005; 10(2):024024. PubMed ID: 15910097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics.
    Kuwana E; Sevick-Muraca EM
    Biophys J; 2002 Aug; 83(2):1165-76. PubMed ID: 12124296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.
    Thompson AB; Sevick-Muraca EM
    J Biomed Opt; 2003 Jan; 8(1):111-20. PubMed ID: 12542387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations.
    Jiang H
    Appl Opt; 1998 Aug; 37(22):5337-43. PubMed ID: 18286015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies.
    Chen Y; Zheng G; Zhang ZH; Blessington D; Zhang M; Li H; Liu Q; Zhou L; Intes X; Achilefu S; Chance B
    Opt Lett; 2003 Nov; 28(21):2070-2. PubMed ID: 14587818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.