These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12099836)

  • 1. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels.
    Veerman C; Ruis H; Sagis LM; van der Linden E
    Biomacromolecules; 2002; 3(4):869-73. PubMed ID: 12099836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology.
    Veerman C; de Schiffart G; Sagis LM; van der Linden E
    Int J Biol Macromol; 2003 Nov; 33(1-3):121-7. PubMed ID: 14599594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesostructure of fibrillar bovine serum albumin gels.
    Veerman C; Sagis LM; Heck J; van der Linden E
    Int J Biol Macromol; 2003 Jan; 31(4-5):139-46. PubMed ID: 12568921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.
    Veerman C; Baptist H; Sagis LM; van der Linden E
    J Agric Food Chem; 2003 Jun; 51(13):3880-5. PubMed ID: 12797759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin.
    Loveday SM; Rao MA; Creamer LK; Singh H
    J Food Sci; 2009 Apr; 74(3):R47-55. PubMed ID: 19397731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation of globular proteins: effect of pH and ionic strength on the critical concentration for gel formation. A simple model and its application to beta-lactoglobulin heat-induced gelation.
    Renard D; Lefebvre J
    Int J Biol Macromol; 1992 Oct; 14(5):287-91. PubMed ID: 1419967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces.
    Rühs PA; Scheuble N; Windhab EJ; Mezzenga R; Fischer P
    Langmuir; 2012 Aug; 28(34):12536-43. PubMed ID: 22857147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of temperature and ionic strength on the dimerisation of beta-lactoglobulin.
    Aymard P; Durand D; Nicolai T
    Int J Biol Macromol; 1996 Oct; 19(3):213-21. PubMed ID: 8910062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrillation of β-lactoglobulin at low pH in the presence of a complexing anionic polysaccharide.
    Jones OG; Adamcik J; Handschin S; Bolisetty S; Mezzenga R
    Langmuir; 2010 Nov; 26(22):17449-58. PubMed ID: 20968310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling of the kinetics of fibrilar aggregation of bovine beta-lactoglobulin at pH 2.
    Arnaudov LN; de Vries R
    J Chem Phys; 2007 Apr; 126(14):145106. PubMed ID: 17444755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic properties of semiflexible amyloid fibrils.
    Sagis LM; Veerman C; van der Linden E
    Langmuir; 2004 Feb; 20(3):924-7. PubMed ID: 15773124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels.
    Lefèvre T; Subirade M
    Biopolymers; 2000 Dec; 54(7):578-86. PubMed ID: 10984409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-dependent insertion of beta-lactoglobulin into monoglyceride monolayers.
    Leenhouts JM; Demel RA; de Kruijff B; Boots JW
    Biochim Biophys Acta; 1997 Nov; 1330(1):61-70. PubMed ID: 9375813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of sulphate, chloride, and thiocyanate salts on formation of β-lactoglobulin-pectin microgels.
    Hirt S; Jones OG; Adijanto M; Gilbert J
    Food Chem; 2014 Dec; 164():63-9. PubMed ID: 24996306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling and dissolution of beta-lactoglobulin gels in alkali.
    Mercadé-Prieto R; Falconer RJ; Paterson WR; Wilson DI
    Biomacromolecules; 2007 Feb; 8(2):469-76. PubMed ID: 17243763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the ionic strength on the heat-induced aggregation of the globular protein beta-lactoglobulin at pH 7.
    Baussay K; Bon CL; Nicolai T; Durand D; Busnel JP
    Int J Biol Macromol; 2004 Apr; 34(1-2):21-8. PubMed ID: 15178005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Ratio between Native-Like, Non-Native-Like, and Aggregated β-Lactoglobulin after Heat Treatment.
    Delahaije RJ; Gruppen H; van Eijk van Boxtel EL; Cornacchia L; Wierenga PA
    J Agric Food Chem; 2016 Jun; 64(21):4362-70. PubMed ID: 27186663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.