These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Takahashi Y; Ebrey TG Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604 [TBL] [Abstract][Full Text] [Related]
9. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. Yokoyama S; Starmer WT; Takahashi Y; Tada T Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of spectral tuning in the dolphin visual pigments. Fasick JI; Robsinson PR Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225 [TBL] [Abstract][Full Text] [Related]
11. Vision in the ultraviolet. Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation. Chinen A; Matsumoto Y; Kawamura S Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516 [TBL] [Abstract][Full Text] [Related]
14. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision. Hart NS; Mountford JK; Davies WI; Collin SP; Hunt DM Proc Biol Sci; 2016 Jul; 283(1834):. PubMed ID: 27383819 [TBL] [Abstract][Full Text] [Related]
15. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996 [TBL] [Abstract][Full Text] [Related]
16. Photochemistry of the primary event in short-wavelength visual opsins at low temperature. Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278 [TBL] [Abstract][Full Text] [Related]
17. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots. van Hazel I; Sabouhanian A; Day L; Endler JA; Chang BS BMC Evol Biol; 2013 Nov; 13():250. PubMed ID: 24499383 [TBL] [Abstract][Full Text] [Related]
18. Cone visual pigments of monotremes: filling the phylogenetic gap. Wakefield MJ; Anderson M; Chang E; Wei KJ; Kaul R; Graves JA; Grützner F; Deeb SS Vis Neurosci; 2008; 25(3):257-64. PubMed ID: 18598396 [TBL] [Abstract][Full Text] [Related]
19. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
20. Cloning and expression of a Xenopus short wavelength cone pigment. Starace DM; Knox BE Exp Eye Res; 1998 Aug; 67(2):209-20. PubMed ID: 9733587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]