BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 12099896)

  • 1. Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons.
    Essin K; Nistri A; Magazanik L
    Eur J Neurosci; 2002 Jun; 15(12):1899-906. PubMed ID: 12099896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective blockade of Ca2+ permeable AMPA receptors in CA1 area of rat hippocampus.
    Buldakova SL; Kim KK; Tikhonov DB; Magazanik LG
    Neuroscience; 2007 Jan; 144(1):88-99. PubMed ID: 17097234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent block of native AMPA receptor channels by dicationic compounds.
    Tikhonov DB; Samoilova MV; Buldakova SL; Gmiro VE; Magazanik LG
    Br J Pharmacol; 2000 Jan; 129(2):265-74. PubMed ID: 10694232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental characteristics of AMPA receptors in chick lumbar motoneurons.
    Ni X; Sullivan GJ; Martin-Caraballo M
    Dev Neurobiol; 2007 Sep; 67(11):1419-32. PubMed ID: 17497695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IEM-1460.
    Buldakova SL; Vorobjev VS; Sharonova IN; Samoilova MV; Magazanik LG
    Brain Res; 1999 Oct; 846(1):52-8. PubMed ID: 10536213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of calcium-permeable AMPA receptors in spinal motoneurons.
    Vandenberghe W; Bindokas VP; Miller RJ; Robberecht W; Brorson JR
    Eur J Neurosci; 2001 Jul; 14(2):305-14. PubMed ID: 11553281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of spinal or hypoglossal motoneurons of the newborn rat by glycine or GABA.
    Marchetti C; Pagnotta S; Donato R; Nistri A
    Eur J Neurosci; 2002 Mar; 15(6):975-83. PubMed ID: 11918657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axotomy-induced change in the properties of (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor channels in rat motoneurons.
    Abdrachmanova G; Vlachová V; Vyklický L
    Neuroscience; 2000; 99(1):119-31. PubMed ID: 10924957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses.
    Liu SJ; Cull-Candy SG
    Nat Neurosci; 2005 Jun; 8(6):768-75. PubMed ID: 15895086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The open channel blocking drug, IEM-1460, reveals functionally distinct alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in rat brain neurons.
    Samoilova MV; Buldakova SL; Vorobjev VS; Sharonova IN; Magazanik LG
    Neuroscience; 1999; 94(1):261-8. PubMed ID: 10613516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons.
    Jahn K; Grosskreutz J; Haastert K; Ziegler E; Schlesinger F; Grothe C; Dengler R; Bufler J
    Neuroscience; 2006 Nov; 142(4):1019-29. PubMed ID: 16949760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro.
    Lamanauskas N; Nistri A
    Eur J Neurosci; 2008 May; 27(10):2501-14. PubMed ID: 18445055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives.
    Magazanik LG; Buldakova SL; Samoilova MV; Gmiro VE; Mellor IR; Usherwood PN
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):655-63. PubMed ID: 9457643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer v pyramidal neurons.
    Shin J; Shen F; Huguenard JR
    J Neurophysiol; 2005 May; 93(5):2634-43. PubMed ID: 15574796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological analysis of the subunit composition of the AMPA receptor in hippocampal neurons.
    Bolshakov KV; Buldakova SL
    Neurosci Behav Physiol; 2001; 31(2):219-25. PubMed ID: 11388376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function.
    McGee TP; Bats C; Farrant M; Cull-Candy SG
    J Neurosci; 2015 Dec; 35(49):16171-9. PubMed ID: 26658868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo.
    Corona JC; Tapia R
    Neuropharmacology; 2007 Apr; 52(5):1219-28. PubMed ID: 17320918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.