BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12100489)

  • 1. Molecular regulation of melanocyte senescence.
    Bennett DC; Medrano EE
    Pigment Cell Res; 2002 Aug; 15(4):242-50. PubMed ID: 12100489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p16(Ink4a) in melanocyte senescence and differentiation.
    Sviderskaya EV; Hill SP; Evans-Whipp TJ; Chin L; Orlow SJ; Easty DJ; Cheong SC; Beach D; DePinho RA; Bennett DC
    J Natl Cancer Inst; 2002 Mar; 94(6):446-54. PubMed ID: 11904317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression.
    Sviderskaya EV; Gray-Schopfer VC; Hill SP; Smit NP; Evans-Whipp TJ; Bond J; Hill L; Bataille V; Peters G; Kipling D; Wynford-Thomas D; Bennett DC
    J Natl Cancer Inst; 2003 May; 95(10):723-32. PubMed ID: 12759390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes.
    Haddad MM; Xu W; Schwahn DJ; Liao F; Medrano EE
    Exp Cell Res; 1999 Dec; 253(2):561-72. PubMed ID: 10585280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells.
    Bandyopadhyay D; Timchenko N; Suwa T; Hornsby PJ; Campisi J; Medrano EE
    Exp Gerontol; 2001 Aug; 36(8):1265-75. PubMed ID: 11602203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human melanocyte senescence and melanoma susceptibility genes.
    Bennett DC
    Oncogene; 2003 May; 22(20):3063-9. PubMed ID: 12789281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients.
    Ghiorzo P; Villaggio B; Sementa AR; Hansson J; Platz A; Nicoló G; Spina B; Canepa M; Palmer JM; Hayward NK; Bianchi-Scarrà G
    Hum Pathol; 2004 Jan; 35(1):25-33. PubMed ID: 14745721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1.
    Bandyopadhyay D; Medrano EE
    Ann N Y Acad Sci; 2000 Jun; 908():71-84. PubMed ID: 10911949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cell cycle regulatory proteins in the pathogenesis of melanoma.
    Li W; Sanki A; Karim RZ; Thompson JF; Soon Lee C; Zhuang L; McCarthy SW; Scolyer RA
    Pathology; 2006 Aug; 38(4):287-301. PubMed ID: 16916716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanomagenesis: overcoming the barrier of melanocyte senescence.
    Ha L; Merlino G; Sviderskaya EV
    Cell Cycle; 2008 Jul; 7(13):1944-8. PubMed ID: 18604170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual inactivation of RB and p53 pathways in RAS-induced melanomas.
    Bardeesy N; Bastian BC; Hezel A; Pinkel D; DePinho RA; Chin L
    Mol Cell Biol; 2001 Mar; 21(6):2144-53. PubMed ID: 11238948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of melanoma progression: the rise and fall of cell senescence.
    Bennett DC
    Pigment Cell Melanoma Res; 2016 Mar; 29(2):122-40. PubMed ID: 26386262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of melanoma in murine macrophage inflammatory protein 2 transgenic mice heterozygous for inhibitor of kinase/alternate reading frame.
    Yang J; Luan J; Yu Y; Li C; DePinho RA; Chin L; Richmond A
    Cancer Res; 2001 Nov; 61(22):8150-7. PubMed ID: 11719444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma.
    Lee WJ; Škalamera D; Dahmer-Heath M; Shakhbazov K; Ranall MV; Fox C; Lambie D; Stevenson AJ; Yaswen P; Gonda TJ; Gabrielli B
    SLAS Discov; 2017 Mar; 22(3):298-308. PubMed ID: 27872202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors.
    Haferkamp S; Scurr LL; Becker TM; Frausto M; Kefford RF; Rizos H
    J Invest Dermatol; 2009 Aug; 129(8):1983-91. PubMed ID: 19212341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of primary cultured mouse hepatic tumor cells to cellular senescence despite expression of p16(Ink4a), p19(Arf), p53, and p21(Waf1/Cip1).
    Obata M; Imamura E; Yoshida Y; Goto J; Kishibe K; Yasuda A; Ogawa K
    Mol Carcinog; 2001 Sep; 32(1):9-18. PubMed ID: 11568971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fibroblast growth factor-2 is not essential for melanoma formation in a transgenic mouse model.
    Ackermann J; Beermann F
    Pigment Cell Res; 2005 Aug; 18(4):315-9. PubMed ID: 16029424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the INK4a/Arf gene locus in senescence.
    Collins CJ; Sedivy JM
    Aging Cell; 2003 Jun; 2(3):145-50. PubMed ID: 12882406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma.
    Brown VL; Harwood CA; Crook T; Cronin JG; Kelsell DP; Proby CM
    J Invest Dermatol; 2004 May; 122(5):1284-92. PubMed ID: 15140233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p16INK4a-induced senescence is disabled by melanoma-associated mutations.
    Haferkamp S; Becker TM; Scurr LL; Kefford RF; Rizos H
    Aging Cell; 2008 Oct; 7(5):733-45. PubMed ID: 18843795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.