These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 12100558)
21. The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding. Ludwig H; Stülke J FEMS Microbiol Lett; 2001 Sep; 203(1):125-9. PubMed ID: 11557150 [TBL] [Abstract][Full Text] [Related]
22. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211 [TBL] [Abstract][Full Text] [Related]
23. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Kim JH; Yang YK; Chambliss GH Mol Microbiol; 2005 Apr; 56(1):155-62. PubMed ID: 15773986 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
25. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A; Schau M; Chen Y; Hulett FM J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317 [TBL] [Abstract][Full Text] [Related]
26. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
27. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
28. Identification of two distinct Bacillus subtilis citrate synthase genes. Jin S; Sonenshein AL J Bacteriol; 1994 Aug; 176(15):4669-79. PubMed ID: 8045898 [TBL] [Abstract][Full Text] [Related]
29. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. Monedero V; Gosalbes MJ; Pérez-Martínez G J Bacteriol; 1997 Nov; 179(21):6657-64. PubMed ID: 9352913 [TBL] [Abstract][Full Text] [Related]
30. Catabolite repression of the citST two-component system in Bacillus subtilis. Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348 [TBL] [Abstract][Full Text] [Related]
31. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. Tobisch S; Zühlke D; Bernhardt J; Stülke J; Hecker M J Bacteriol; 1999 Nov; 181(22):6996-7004. PubMed ID: 10559165 [TBL] [Abstract][Full Text] [Related]
32. The Bacillus subtilis response regulator gene degU is positively regulated by CcpA and by catabolite-repressed synthesis of ClpC. Ishii H; Tanaka T; Ogura M J Bacteriol; 2013 Jan; 195(2):193-201. PubMed ID: 23123903 [TBL] [Abstract][Full Text] [Related]
33. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. Kim JH; Guvener ZT; Cho JY; Chung KC; Chambliss GH J Bacteriol; 1995 Sep; 177(17):5129-34. PubMed ID: 7665492 [TBL] [Abstract][Full Text] [Related]
34. Functional and structural analysis of catabolite control protein C that responds to citrate. Liu W; Chen J; Jin L; Liu ZY; Lu M; Jiang G; Yang Q; Quan C; Nam KH; Xu Y Sci Rep; 2021 Oct; 11(1):20285. PubMed ID: 34645869 [TBL] [Abstract][Full Text] [Related]
35. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis. Choi SK; Saier MH J Mol Microbiol Biotechnol; 2005; 10(1):40-50. PubMed ID: 16491025 [TBL] [Abstract][Full Text] [Related]
36. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. Choi SK; Saier MH J Bacteriol; 2005 Oct; 187(19):6856-61. PubMed ID: 16166551 [TBL] [Abstract][Full Text] [Related]
37. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related]
38. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. Fujita Y; Miwa Y J Bacteriol; 1994 Jan; 176(2):511-3. PubMed ID: 8288545 [TBL] [Abstract][Full Text] [Related]
39. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Shivers RP; Dineen SS; Sonenshein AL Mol Microbiol; 2006 Nov; 62(3):811-22. PubMed ID: 16995897 [TBL] [Abstract][Full Text] [Related]
40. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Muscariello L; Marasco R; De Felice M; Sacco M Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]